diff libs/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/TIM/DMABurst/readme.txt @ 0:c59513fd84fb

Initial commit of STM32 test code.
author Daniel O'Connor <darius@dons.net.au>
date Mon, 03 Oct 2011 21:19:15 +1030
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/libs/STM32F10x_StdPeriph_Lib_V3.5.0/Project/STM32F10x_StdPeriph_Examples/TIM/DMABurst/readme.txt	Mon Oct 03 21:19:15 2011 +1030
@@ -0,0 +1,101 @@
+/**
+  @page TIM1_DMABURST TIM1 DMA Burst transfer example
+  
+  @verbatim
+  ******************** (C) COPYRIGHT 2011 STMicroelectronics *******************
+  * @file    TIM/DMABurst/readme.txt 
+  * @author  MCD Application Team
+  * @version V3.5.0
+  * @date    08-April-2011
+  * @brief   Description of the TIM1 DMA Burst transfer example.
+  ******************************************************************************
+  * THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
+  * WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
+  * TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
+  * DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
+  * FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
+  * CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
+  ******************************************************************************
+   @endverbatim
+
+@par Example Description 
+
+This example shows how to update the TIM1 channel1 period and the duty cycle 
+using the TIM1 DMA burst feature.
+
+Every update DMA request, the DMA will do 3 transfers of half words into Timer 
+registers beginning from ARR register.
+On the DMA update request, 0x0FFF will be transferred into ARR, 0x0000 
+will be transferred into RCR, 0x0555 will be transferred into CCR1. 
+
+The TIM1CLK frequency is set to SystemCoreClock (Hz), to get TIM1 counter
+clock at 24 MHz the Prescaler is computed as following:
+   - Prescaler = (TIM1CLK / TIM1 counter clock) - 1
+SystemCoreClock is set to 72 MHz for Low-density, Medium-density, High-density
+and Connectivity line devices and to 24 MHz for Value line devices.
+
+The TIM1 period is 5.8 KHz: TIM1 Frequency = TIM1 counter clock/(ARR + 1)
+                                           = 24 MHz / 4096 = 5.8 KHz
+The TIM1 CCR1 register value is equal to 0x555, so the TIM1 Channel 1 generates a 
+PWM signal with a frequency equal to 5.8 KHz and a duty cycle equal to 33.33%:
+TIM1 Channel1 duty cycle = (TIM1_CCR1/ TIM1_ARR + 1)* 100 = 33.33%
+
+The PWM waveform can be displayed using an oscilloscope.
+
+@note No need of RCR update, but we  should do it because of the ARR and CCR1 
+      mapping. 
+
+
+@par Directory contents 
+
+  - TIM/DMABurst/stm32f10x_conf.h    Library Configuration file
+  - TIM/DMABurst/stm32f10x_it.c      Interrupt handlers
+  - TIM/DMABurst/stm32f10x_it.h      Interrupt handlers header file
+  - TIM/DMABurst/main.c              Main program 
+  - TIM/DMABurst/system_stm32f10x.c  STM32F10x system source file
+  
+@par Hardware and Software environment 
+
+  - This example runs on STM32F10x Connectivity line, High-Density, High-Density 
+    Value line, Medium-Density, XL-Density, Medium-Density Value line, Low-Density 
+    and Low-Density Value line Devices.
+  
+  - This example has been tested with STMicroelectronics STM32100E-EVAL (High-Density
+    Value line), STM32100B-EVAL (Medium-Density Value line), STM3210C-EVAL (Connectivity line), 
+    STM3210E-EVAL (High-Density and XL-Density) and STM3210B-EVAL (Medium-Density) 
+    evaluation boards and can be easily tailored to any other supported device 
+    and development board.
+
+  - STM32100E-EVAL, STM32100B-EVAL, STM3210C-EVAL, STM3210E-EVAL, STM32100E-EVAL and STM3210B-EVAL Set-up 
+    - Connect the following pins to an oscilloscope to monitor the different 
+      waveforms:  
+        - TIM1 CH1  (PA.08) 
+  
+@par How to use it ? 
+
+In order to make the program work, you must do the following :
+ - Copy all source files from this example folder to the template folder under
+   Project\STM32F10x_StdPeriph_Template
+ - Open your preferred toolchain 
+ - Rebuild all files and load your image into target memory
+ - Run the example 
+
+@note
+ - Low-density Value line devices are STM32F100xx microcontrollers where the 
+   Flash memory density ranges between 16 and 32 Kbytes.
+ - Low-density devices are STM32F101xx, STM32F102xx and STM32F103xx 
+   microcontrollers where the Flash memory density ranges between 16 and 32 Kbytes.
+ - Medium-density Value line devices are STM32F100xx microcontrollers where
+   the Flash memory density ranges between 64 and 128 Kbytes.  
+ - Medium-density devices are STM32F101xx, STM32F102xx and STM32F103xx 
+   microcontrollers where the Flash memory density ranges between 64 and 128 Kbytes.
+ - High-density Value line devices are STM32F100xx microcontrollers where
+   the Flash memory density ranges between 256 and 512 Kbytes.
+ - High-density devices are STM32F101xx and STM32F103xx microcontrollers where
+   the Flash memory density ranges between 256 and 512 Kbytes.
+ - XL-density devices are STM32F101xx and STM32F103xx microcontrollers where
+   the Flash memory density ranges between 512 and 1024 Kbytes.
+ - Connectivity line devices are STM32F105xx and STM32F107xx microcontrollers.
+   
+ * <h3><center>&copy; COPYRIGHT 2011 STMicroelectronics</center></h3>
+ */