Mercurial > ~darius > hgwebdir.cgi > pyinst
view rs_fsp7_noisetest.py @ 81:1947d10f9395
- Search for signal frequency iteratively to improve accuracy.
- Use narrower bandwidths (via FFT filter) for close in measurements.
- Work around bug in firmware when using FFT filter.
- Actually _raise_ the exception when the signal power is too low.
author | Daniel O'Connor <doconnor@gsoft.com.au> |
---|---|
date | Fri, 27 Sep 2024 16:56:44 +0930 |
parents | 23c96322cfb6 |
children | 4b4ae555067b |
line wrap: on
line source
#!/usr/bin/env python # Copyright (c) 2012 # Daniel O'Connor <darius@dons.net.au>. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS # OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY # OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF # SUCH DAMAGE. # import math import numpy import optparse import rsib import scipy import scpi import sys def findenr(frq): # ENR values from the noise source enrdb = numpy.array([15.55, 15.96, 15.68, 15.11, 15.07, 14.84, 14.77, 14.82, 14.86, 14.79, 14.83, 14.93, 14.93, 15.07, 15.19, 15.08, 15.14, 14.87, 14.97, 14.59]) enrfrq = numpy.array([0.01e9, 0.1e9, 1.0e9, 2.0e9, 3.0e9, 4.0e9, 5.0e9, 6.0e9, 7.0e9, 8.0e9, 9.0e9, 10.0e9, 11.0e9, 12.0e9, 13.0e9, 14.0e9, 15.0e9, 16.0e9, 17.0e9, 18.0e9]) # Convert back to linear values enr = 10 ** (enrdb / 10) # Interpolate rtn = scipy.interp([frq], enrfrq, enr) # Convert to dB rtndb = 10 * math.log10(rtn) return rtndb def setup(r, freq, span, sweeps, bw): # Reset to defaults r.write("*RST") # Set to single sweep mode r.write("INIT:CONT OFF") # Enable display updates r.write("SYST:DISP:UPD ON") # Set frequency range r.write("SENSE1:FREQ:CENT %f Hz" % (freq)) r.write("SENSE1:FREQ:SPAN %f Hz" % (span)) # Switch marker 1 on in screen A r.write("CALC:MARK1 ON") # Enable noise measurement r.write("CALC:MARK1:FUNC:NOIS ON") # Turn averaging on r.write("AVER:STAT ON") # Set number of sweeps r.write("SWE:COUN %d" % (sweeps)) # Set resolution bandwidth r.write("SENS1:BAND:RES %f Hz" % (bw)) # Set video bandwidth (10x res BW) r.write("SENS1:BAND:VID %f Hz" % (bw * 10)) def getnoise(r): # Trigger the sweep r.write("INIT;*WAI") # Wait for it to be done r.write("*OPC?") opc = scpi.getdata(r.read(None), int) #print "OPC - %d" % (opc) assert(opc == 1) # Set data format r.write("FORM:DATA ASC") # Read noise value r.write("CALC:MARK1:FUNC:NOIS:RES?") data = r.read(10) #print "Data - " + data return float(data) def setnoise(r, en): if en: val = "ON" else: val = "OFF" r.write("DIAG:SERV:NSO " + val) def calcnf(enrdb, offdb, ondb): # Not possible but noisy results may result in it happening if ondb <= offdb: return 0 ydb = ondb - offdb y = 10 ** (ydb / 10) enr = 10 ** (enrdb / 10) nf = 10 * math.log10(enr / (y - 1)) return nf def donoisetest(r, enr): print("Acquiring with noise off..") setnoise(r, False) off = getnoise(r) print("Acquiring with noise on..") setnoise(r, True) on = getnoise(r) return off, on, calcnf(enr, off, on) if __name__ == '__main__': parser = optparse.OptionParser(usage = '%prog [options] address frequency', description = 'Configures a Rohde Schwarz FSP7 spectrum analyser to do a noise figure test', epilog = 'video bandwidth is set to 10 times the resolution bandwidth') parser.add_option('-s', '--span', dest = 'span', default = 1e6, help = 'Span frequency in Hz (default: %default)', type = float) parser.add_option('-i', '--input', dest = 'input', default = None, help = 'Frequency used to compute ENR (defaults to frequency)', type = float) parser.add_option('-w', '--sweeps', dest = 'sweeps', default = 20, help = 'Number of sweeps (default: %default)', type = int) parser.add_option('-b', '--bw', dest = 'bw', default = 1000, help = 'Resolution bandwidth in Hz (default: %default)', type = float) parser.add_option('-r', '--repeat', dest = 'repeat', help = 'Number of repetitions, if not specified do one and ask to continue', type = int) (options, args) = parser.parse_args() if len(args) != 2: parser.error('Must supply the specan address and centre frequency') addr = args[0] try: freq = float(args[1]) except ValueError: parser.error('Unable to parse frequency') if options.input == None: options.input = freq # Compute ENR at frequency of interest enr = findenr(options.input) # Connect to the analyser r = rsib.RSIBDevice(addr) # ID instrument r.write('*IDN?') print("ID is " + r.read(5)) # Setup parameters setup(r, freq, options.span, options.sweeps, options.bw) r.write("INIT:CONT OFF") nfs = [] print("Centre: %.1f Mhz, Span %.1f Mhz, Input %.1f MHz, BW %.1f kHz, %d sweeps, ENR %.2f dB" % (freq / 1e6, options.span / 1e6, options.input / 1e6, options.bw / 1e3, options.sweeps, enr)) while options.repeat == None or options.repeat > 0: off, on, nf = donoisetest(r, enr) print("Off %.3f dBm/Hz, on %.3f dBm/Hz, NF %.2f dB" % (off, on, nf)) nfs.append(nf) if options.repeat == None: print("Press enter to perform a new measurement") sys.stdin.readline() else: options.repeat -= 1 if len(nfs) > 1: nfs = numpy.array(nfs) print("NF min: %.1f dBm/Hz, max: %.1f dBm/Hz, avg: %.1f dBm/hz, stddev: %.1f" % ( nfs.min(), nfs.max(), nfs.sum() / len(nfs), numpy.std(nfs)))