Mercurial > ~darius > hgwebdir.cgi > paradise_server
diff zlib/deflate.c @ 10:1040ca591f2e
First entry of Paradise Server 2.9 patch 10 Beta
author | darius |
---|---|
date | Sat, 06 Dec 1997 04:37:18 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/zlib/deflate.c Sat Dec 06 04:37:18 1997 +0000 @@ -0,0 +1,1003 @@ +/* deflate.c -- compress data using the deflation algorithm + * Copyright (C) 1995 Jean-loup Gailly. + * For conditions of distribution and use, see copyright notice in zlib.h + */ + +/* + * ALGORITHM + * + * The "deflation" process depends on being able to identify portions + * of the input text which are identical to earlier input (within a + * sliding window trailing behind the input currently being processed). + * + * The most straightforward technique turns out to be the fastest for + * most input files: try all possible matches and select the longest. + * The key feature of this algorithm is that insertions into the string + * dictionary are very simple and thus fast, and deletions are avoided + * completely. Insertions are performed at each input character, whereas + * string matches are performed only when the previous match ends. So it + * is preferable to spend more time in matches to allow very fast string + * insertions and avoid deletions. The matching algorithm for small + * strings is inspired from that of Rabin & Karp. A brute force approach + * is used to find longer strings when a small match has been found. + * A similar algorithm is used in comic (by Jan-Mark Wams) and freeze + * (by Leonid Broukhis). + * A previous version of this file used a more sophisticated algorithm + * (by Fiala and Greene) which is guaranteed to run in linear amortized + * time, but has a larger average cost, uses more memory and is patented. + * However the F&G algorithm may be faster for some highly redundant + * files if the parameter max_chain_length (described below) is too large. + * + * ACKNOWLEDGEMENTS + * + * The idea of lazy evaluation of matches is due to Jan-Mark Wams, and + * I found it in 'freeze' written by Leonid Broukhis. + * Thanks to many people for bug reports and testing. + * + * REFERENCES + * + * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". + * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc + * + * A description of the Rabin and Karp algorithm is given in the book + * "Algorithms" by R. Sedgewick, Addison-Wesley, p252. + * + * Fiala,E.R., and Greene,D.H. + * Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595 + * + */ + +/* $Id: deflate.c,v 1.1.1.1 1997/12/06 04:37:17 darius Exp $ */ + +#include "deflate.h" + +char copyright[] = " deflate Copyright 1995 Jean-loup Gailly "; +/* + If you use the zlib library in a product, an acknowledgment is welcome + in the documentation of your product. If for some reason you cannot + include such an acknowledgment, I would appreciate that you keep this + copyright string in the executable of your product. + */ + +#define NIL 0 +/* Tail of hash chains */ + +#ifndef TOO_FAR +# define TOO_FAR 4096 +#endif +/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */ + +#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1) +/* Minimum amount of lookahead, except at the end of the input file. + * See deflate.c for comments about the MIN_MATCH+1. + */ + +/* Values for max_lazy_match, good_match and max_chain_length, depending on + * the desired pack level (0..9). The values given below have been tuned to + * exclude worst case performance for pathological files. Better values may be + * found for specific files. + */ + +typedef struct config_s { + ush good_length; /* reduce lazy search above this match length */ + ush max_lazy; /* do not perform lazy search above this match length */ + ush nice_length; /* quit search above this match length */ + ush max_chain; +} config; + +local config configuration_table[10] = { +/* good lazy nice chain */ +/* 0 */ {0, 0, 0, 0}, /* store only */ +/* 1 */ {4, 4, 8, 4}, /* maximum speed, no lazy matches */ +/* 2 */ {4, 5, 16, 8}, +/* 3 */ {4, 6, 32, 32}, + +/* 4 */ {4, 4, 16, 16}, /* lazy matches */ +/* 5 */ {8, 16, 32, 32}, +/* 6 */ {8, 16, 128, 128}, +/* 7 */ {8, 32, 128, 256}, +/* 8 */ {32, 128, 258, 1024}, +/* 9 */ {32, 258, 258, 4096}}; /* maximum compression */ + +/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4 + * For deflate_fast() (levels <= 3) good is ignored and lazy has a different + * meaning. + */ + +#define EQUAL 0 +/* result of memcmp for equal strings */ + +struct static_tree_desc_s {int dummy;}; /* for buggy compilers */ + +/* =========================================================================== + * Prototypes for local functions. + */ + +local void fill_window OF((deflate_state *s)); +local int deflate_fast OF((deflate_state *s, int flush)); +local int deflate_slow OF((deflate_state *s, int flush)); +local void lm_init OF((deflate_state *s)); +local int longest_match OF((deflate_state *s, IPos cur_match)); +local void putShortMSB OF((deflate_state *s, uInt b)); +local void flush_pending OF((z_stream *strm)); +local int read_buf OF((z_stream *strm, charf *buf, unsigned size)); +#ifdef ASMV + void match_init OF((void)); /* asm code initialization */ +#endif + +#ifdef DEBUG +local void check_match OF((deflate_state *s, IPos start, IPos match, + int length)); +#endif + + +/* =========================================================================== + * Update a hash value with the given input byte + * IN assertion: all calls to to UPDATE_HASH are made with consecutive + * input characters, so that a running hash key can be computed from the + * previous key instead of complete recalculation each time. + */ +#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask) + + +/* =========================================================================== + * Insert string str in the dictionary and set match_head to the previous head + * of the hash chain (the most recent string with same hash key). Return + * the previous length of the hash chain. + * IN assertion: all calls to to INSERT_STRING are made with consecutive + * input characters and the first MIN_MATCH bytes of str are valid + * (except for the last MIN_MATCH-1 bytes of the input file). + */ +#define INSERT_STRING(s, str, match_head) \ + (UPDATE_HASH(s, s->ins_h, s->window[(str) + (MIN_MATCH-1)]), \ + s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \ + s->head[s->ins_h] = (str)) + +/* =========================================================================== + * Initialize the hash table (avoiding 64K overflow for 16 bit systems). + * prev[] will be initialized on the fly. + */ +#define CLEAR_HASH(s) \ + s->head[s->hash_size-1] = NIL; \ + zmemzero((charf *)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head)); + +/* ========================================================================= */ +int deflateInit (strm, level) + z_stream *strm; + int level; +{ + return deflateInit2 (strm, level, DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, 0); + /* To do: ignore strm->next_in if we use it as window */ +} + +/* ========================================================================= */ +int deflateInit2 (strm, level, method, windowBits, memLevel, strategy) + z_stream *strm; + int level; + int method; + int windowBits; + int memLevel; + int strategy; +{ + deflate_state *s; + int noheader = 0; + + if (strm == Z_NULL) return Z_STREAM_ERROR; + + strm->msg = Z_NULL; + if (strm->zalloc == Z_NULL) strm->zalloc = zcalloc; + if (strm->zfree == Z_NULL) strm->zfree = zcfree; + + if (level == Z_DEFAULT_COMPRESSION) level = 6; + + if (windowBits < 0) { /* undocumented feature: suppress zlib header */ + noheader = 1; + windowBits = -windowBits; + } + if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != DEFLATED || + windowBits < 8 || windowBits > 15 || level < 1 || level > 9) { + return Z_STREAM_ERROR; + } + s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state)); + if (s == Z_NULL) return Z_MEM_ERROR; + strm->state = (struct internal_state FAR *)s; + s->strm = strm; + + s->noheader = noheader; + s->w_bits = windowBits; + s->w_size = 1 << s->w_bits; + s->w_mask = s->w_size - 1; + + s->hash_bits = memLevel + 7; + s->hash_size = 1 << s->hash_bits; + s->hash_mask = s->hash_size - 1; + s->hash_shift = ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH); + + s->window = (Bytef *) ZALLOC(strm, s->w_size, 2*sizeof(Byte)); + s->prev = (Posf *) ZALLOC(strm, s->w_size, sizeof(Pos)); + s->head = (Posf *) ZALLOC(strm, s->hash_size, sizeof(Pos)); + + s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */ + + s->pending_buf = (uchf *) ZALLOC(strm, s->lit_bufsize, 2*sizeof(ush)); + + if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL || + s->pending_buf == Z_NULL) { + strm->msg = z_errmsg[1-Z_MEM_ERROR]; + deflateEnd (strm); + return Z_MEM_ERROR; + } + s->d_buf = (ushf *) &(s->pending_buf[s->lit_bufsize]); + s->l_buf = (uchf *) &(s->pending_buf[3*s->lit_bufsize]); + /* We overlay pending_buf and d_buf+l_buf. This works since the average + * output size for (length,distance) codes is <= 32 bits (worst case + * is 15+15+13=33). + */ + + s->level = level; + s->strategy = strategy; + s->method = (Byte)method; + + return deflateReset(strm); +} + +/* ========================================================================= */ +int deflateReset (strm) + z_stream *strm; +{ + deflate_state *s; + + if (strm == Z_NULL || strm->state == Z_NULL || + strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR; + + strm->total_in = strm->total_out = 0; + strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */ + strm->data_type = Z_UNKNOWN; + + s = (deflate_state *)strm->state; + s->pending = 0; + s->pending_out = s->pending_buf; + + if (s->noheader < 0) { + s->noheader = 0; /* was set to -1 by deflate(..., Z_FINISH); */ + } + s->status = s->noheader ? BUSY_STATE : INIT_STATE; + s->adler = 1; + + ct_init(s); + lm_init(s); + + return Z_OK; +} + +/* ========================================================================= + * Put a short in the pending buffer. The 16-bit value is put in MSB order. + * IN assertion: the stream state is correct and there is enough room in + * pending_buf. + */ +local void putShortMSB (s, b) + deflate_state *s; + uInt b; +{ + put_byte(s, (Byte)(b >> 8)); + put_byte(s, (Byte)(b & 0xff)); +} + +/* ========================================================================= + * Flush as much pending output as possible. + */ +local void flush_pending(strm) + z_stream *strm; +{ + unsigned len = strm->state->pending; + + if (len > strm->avail_out) len = strm->avail_out; + if (len == 0) return; + + zmemcpy(strm->next_out, strm->state->pending_out, len); + strm->next_out += len; + strm->state->pending_out += len; + strm->total_out += len; + strm->avail_out -= len; + strm->state->pending -= len; + if (strm->state->pending == 0) { + strm->state->pending_out = strm->state->pending_buf; + } +} + +/* ========================================================================= */ +int deflate (strm, flush) + z_stream *strm; + int flush; +{ + if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; + + if (strm->next_out == Z_NULL || + (strm->next_in == Z_NULL && strm->avail_in != 0)) { + ERR_RETURN(strm, Z_STREAM_ERROR); + } + if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR); + + strm->state->strm = strm; /* just in case */ + + /* Write the zlib header */ + if (strm->state->status == INIT_STATE) { + + uInt header = (DEFLATED + ((strm->state->w_bits-8)<<4)) << 8; + uInt level_flags = (strm->state->level-1) >> 1; + + if (level_flags > 3) level_flags = 3; + header |= (level_flags << 6); + header += 31 - (header % 31); + + strm->state->status = BUSY_STATE; + putShortMSB(strm->state, header); + } + + /* Flush as much pending output as possible */ + if (strm->state->pending != 0) { + flush_pending(strm); + if (strm->avail_out == 0) return Z_OK; + } + + /* User must not provide more input after the first FINISH: */ + if (strm->state->status == FINISH_STATE && strm->avail_in != 0) { + ERR_RETURN(strm, Z_BUF_ERROR); + } + + /* Start a new block or continue the current one. + */ + if (strm->avail_in != 0 || strm->state->lookahead != 0 || + (flush != Z_NO_FLUSH && strm->state->status != FINISH_STATE)) { + int quit; + + if (flush == Z_FINISH) { + strm->state->status = FINISH_STATE; + } + if (strm->state->level <= 3) { + quit = deflate_fast(strm->state, flush); + } else { + quit = deflate_slow(strm->state, flush); + } + if (quit || strm->avail_out == 0) return Z_OK; + /* If flush != Z_NO_FLUSH && avail_out == 0, the next call + * of deflate should use the same flush parameter to make sure + * that the flush is complete. So we don't have to output an + * empty block here, this will be done at next call. This also + * ensures that for a very small output buffer, we emit at most + * one empty block. + */ + if (flush != Z_OK && flush != Z_FINISH) { + if (flush == Z_PARTIAL_FLUSH) { + ct_align(strm->state); + } else { /* FULL_FLUSH or SYNC_FLUSH */ + ct_stored_block(strm->state, (char*)0, 0L, 0); + /* For a full flush, this empty block will be recognized + * as a special marker by inflate_sync(). + */ + if (flush == Z_FULL_FLUSH) { + CLEAR_HASH(strm->state); /* forget history */ + } + } + flush_pending(strm); + if (strm->avail_out == 0) return Z_OK; + } + } + Assert(strm->avail_out > 0, "bug2"); + + if (flush != Z_FINISH) return Z_OK; + if (strm->state->noheader) return Z_STREAM_END; + + /* Write the zlib trailer (adler32) */ + putShortMSB(strm->state, (uInt)(strm->state->adler >> 16)); + putShortMSB(strm->state, (uInt)(strm->state->adler & 0xffff)); + flush_pending(strm); + /* If avail_out is zero, the application will call deflate again + * to flush the rest. + */ + strm->state->noheader = -1; /* write the trailer only once! */ + return strm->state->pending != 0 ? Z_OK : Z_STREAM_END; +} + +/* ========================================================================= */ +int deflateEnd (strm) + z_stream *strm; +{ + if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR; + + TRY_FREE(strm, strm->state->window); + TRY_FREE(strm, strm->state->prev); + TRY_FREE(strm, strm->state->head); + TRY_FREE(strm, strm->state->pending_buf); + + ZFREE(strm, strm->state); + strm->state = Z_NULL; + + return Z_OK; +} + +/* ========================================================================= */ +int deflateCopy (dest, source) + z_stream *dest; + z_stream *source; +{ + if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) { + return Z_STREAM_ERROR; + } + *dest = *source; + return Z_STREAM_ERROR; /* to be implemented */ +#if 0 + dest->state = (struct internal_state FAR *) + (*dest->zalloc)(1, sizeof(deflate_state)); + if (dest->state == Z_NULL) return Z_MEM_ERROR; + + *(dest->state) = *(source->state); + return Z_OK; +#endif +} + +/* =========================================================================== + * Read a new buffer from the current input stream, update the adler32 + * and total number of bytes read. + */ +local int read_buf(strm, buf, size) + z_stream *strm; + charf *buf; + unsigned size; +{ + unsigned len = strm->avail_in; + + if (len > size) len = size; + if (len == 0) return 0; + + strm->avail_in -= len; + + if (!strm->state->noheader) { + strm->state->adler = adler32(strm->state->adler, strm->next_in, len); + } + zmemcpy(buf, strm->next_in, len); + strm->next_in += len; + strm->total_in += len; + + return (int)len; +} + +/* =========================================================================== + * Initialize the "longest match" routines for a new zlib stream + */ +local void lm_init (s) + deflate_state *s; +{ + s->window_size = (ulg)2L*s->w_size; + + CLEAR_HASH(s); + + /* Set the default configuration parameters: + */ + s->max_lazy_match = configuration_table[s->level].max_lazy; + s->good_match = configuration_table[s->level].good_length; + s->nice_match = configuration_table[s->level].nice_length; + s->max_chain_length = configuration_table[s->level].max_chain; + + s->strstart = 0; + s->block_start = 0L; + s->lookahead = 0; + s->match_length = MIN_MATCH-1; + s->match_available = 0; + s->ins_h = 0; +#ifdef ASMV + match_init(); /* initialize the asm code */ +#endif +} + +/* =========================================================================== + * Set match_start to the longest match starting at the given string and + * return its length. Matches shorter or equal to prev_length are discarded, + * in which case the result is equal to prev_length and match_start is + * garbage. + * IN assertions: cur_match is the head of the hash chain for the current + * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 + */ +#ifndef ASMV +/* For 80x86 and 680x0, an optimized version will be provided in match.asm or + * match.S. The code will be functionally equivalent. + */ +local int longest_match(s, cur_match) + deflate_state *s; + IPos cur_match; /* current match */ +{ + unsigned chain_length = s->max_chain_length;/* max hash chain length */ + register Bytef *scan = s->window + s->strstart; /* current string */ + register Bytef *match; /* matched string */ + register int len; /* length of current match */ + int best_len = s->prev_length; /* best match length so far */ + IPos limit = s->strstart > (IPos)MAX_DIST(s) ? + s->strstart - (IPos)MAX_DIST(s) : NIL; + /* Stop when cur_match becomes <= limit. To simplify the code, + * we prevent matches with the string of window index 0. + */ + Posf *prev = s->prev; + uInt wmask = s->w_mask; + +#ifdef UNALIGNED_OK + /* Compare two bytes at a time. Note: this is not always beneficial. + * Try with and without -DUNALIGNED_OK to check. + */ + register Bytef *strend = s->window + s->strstart + MAX_MATCH - 1; + register ush scan_start = *(ushf*)scan; + register ush scan_end = *(ushf*)(scan+best_len-1); +#else + register Bytef *strend = s->window + s->strstart + MAX_MATCH; + register Byte scan_end1 = scan[best_len-1]; + register Byte scan_end = scan[best_len]; +#endif + + /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16. + * It is easy to get rid of this optimization if necessary. + */ + Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever"); + + /* Do not waste too much time if we already have a good match: */ + if (s->prev_length >= s->good_match) { + chain_length >>= 2; + } + Assert((ulg)s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead"); + + do { + Assert(cur_match < s->strstart, "no future"); + match = s->window + cur_match; + + /* Skip to next match if the match length cannot increase + * or if the match length is less than 2: + */ +#if (defined(UNALIGNED_OK) && MAX_MATCH == 258) + /* This code assumes sizeof(unsigned short) == 2. Do not use + * UNALIGNED_OK if your compiler uses a different size. + */ + if (*(ushf*)(match+best_len-1) != scan_end || + *(ushf*)match != scan_start) continue; + + /* It is not necessary to compare scan[2] and match[2] since they are + * always equal when the other bytes match, given that the hash keys + * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at + * strstart+3, +5, ... up to strstart+257. We check for insufficient + * lookahead only every 4th comparison; the 128th check will be made + * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is + * necessary to put more guard bytes at the end of the window, or + * to check more often for insufficient lookahead. + */ + Assert(scan[2] == match[2], "scan[2]?"); + scan++, match++; + do { + } while (*(ushf*)(scan+=2) == *(ushf*)(match+=2) && + *(ushf*)(scan+=2) == *(ushf*)(match+=2) && + *(ushf*)(scan+=2) == *(ushf*)(match+=2) && + *(ushf*)(scan+=2) == *(ushf*)(match+=2) && + scan < strend); + /* The funny "do {}" generates better code on most compilers */ + + /* Here, scan <= window+strstart+257 */ + Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); + if (*scan == *match) scan++; + + len = (MAX_MATCH - 1) - (int)(strend-scan); + scan = strend - (MAX_MATCH-1); + +#else /* UNALIGNED_OK */ + + if (match[best_len] != scan_end || + match[best_len-1] != scan_end1 || + *match != *scan || + *++match != scan[1]) continue; + + /* The check at best_len-1 can be removed because it will be made + * again later. (This heuristic is not always a win.) + * It is not necessary to compare scan[2] and match[2] since they + * are always equal when the other bytes match, given that + * the hash keys are equal and that HASH_BITS >= 8. + */ + scan += 2, match++; + Assert(*scan == *match, "match[2]?"); + + /* We check for insufficient lookahead only every 8th comparison; + * the 256th check will be made at strstart+258. + */ + do { + } while (*++scan == *++match && *++scan == *++match && + *++scan == *++match && *++scan == *++match && + *++scan == *++match && *++scan == *++match && + *++scan == *++match && *++scan == *++match && + scan < strend); + + Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan"); + + len = MAX_MATCH - (int)(strend - scan); + scan = strend - MAX_MATCH; + +#endif /* UNALIGNED_OK */ + + if (len > best_len) { + s->match_start = cur_match; + best_len = len; + if (len >= s->nice_match) break; +#ifdef UNALIGNED_OK + scan_end = *(ushf*)(scan+best_len-1); +#else + scan_end1 = scan[best_len-1]; + scan_end = scan[best_len]; +#endif + } + } while ((cur_match = prev[cur_match & wmask]) > limit + && --chain_length != 0); + + return best_len; +} +#endif /* ASMV */ + +#ifdef DEBUG +/* =========================================================================== + * Check that the match at match_start is indeed a match. + */ +local void check_match(s, start, match, length) + deflate_state *s; + IPos start, match; + int length; +{ + /* check that the match is indeed a match */ + if (memcmp((charf *)s->window + match, + (charf *)s->window + start, length) != EQUAL) { + fprintf(stderr, + " start %u, match %u, length %d\n", + start, match, length); + do { fprintf(stderr, "%c%c", s->window[match++], + s->window[start++]); } while (--length != 0); + z_error("invalid match"); + } + if (verbose > 1) { + fprintf(stderr,"\\[%d,%d]", start-match, length); + do { putc(s->window[start++], stderr); } while (--length != 0); + } +} +#else +# define check_match(s, start, match, length) +#endif + +/* =========================================================================== + * Fill the window when the lookahead becomes insufficient. + * Updates strstart and lookahead. + * + * IN assertion: lookahead < MIN_LOOKAHEAD + * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD + * At least one byte has been read, or avail_in == 0; reads are + * performed for at least two bytes (required for the zip translate_eol + * option -- not supported here). + */ +local void fill_window(s) + deflate_state *s; +{ + register unsigned n, m; + register Posf *p; + unsigned more; /* Amount of free space at the end of the window. */ + uInt wsize = s->w_size; + + do { + more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart); + + /* Deal with !@#$% 64K limit: */ + if (more == 0 && s->strstart == 0 && s->lookahead == 0) { + more = wsize; + } else if (more == (unsigned)(-1)) { + /* Very unlikely, but possible on 16 bit machine if strstart == 0 + * and lookahead == 1 (input done one byte at time) + */ + more--; + + /* If the window is almost full and there is insufficient lookahead, + * move the upper half to the lower one to make room in the upper half. + */ + } else if (s->strstart >= wsize+MAX_DIST(s)) { + + /* By the IN assertion, the window is not empty so we can't confuse + * more == 0 with more == 64K on a 16 bit machine. + */ + zmemcpy((charf *)s->window, (charf *)s->window+wsize, + (unsigned)wsize); + s->match_start -= wsize; + s->strstart -= wsize; /* we now have strstart >= MAX_DIST */ + + s->block_start -= (long) wsize; + + /* Slide the hash table (could be avoided with 32 bit values + at the expense of memory usage): + */ + n = s->hash_size; + p = &s->head[n]; + do { + m = *--p; + *p = (Pos)(m >= wsize ? m-wsize : NIL); + } while (--n); + + n = wsize; + p = &s->prev[n]; + do { + m = *--p; + *p = (Pos)(m >= wsize ? m-wsize : NIL); + /* If n is not on any hash chain, prev[n] is garbage but + * its value will never be used. + */ + } while (--n); + + more += wsize; + } + if (s->strm->avail_in == 0) return; + + /* If there was no sliding: + * strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 && + * more == window_size - lookahead - strstart + * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1) + * => more >= window_size - 2*WSIZE + 2 + * In the BIG_MEM or MMAP case (not yet supported), + * window_size == input_size + MIN_LOOKAHEAD && + * strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD. + * Otherwise, window_size == 2*WSIZE so more >= 2. + * If there was sliding, more >= WSIZE. So in all cases, more >= 2. + */ + Assert(more >= 2, "more < 2"); + + n = read_buf(s->strm, (charf *)s->window + s->strstart + s->lookahead, + more); + s->lookahead += n; + + /* Initialize the hash value now that we have some input: */ + if (s->lookahead >= MIN_MATCH) { + s->ins_h = s->window[s->strstart]; + UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); +#if MIN_MATCH != 3 + Call UPDATE_HASH() MIN_MATCH-3 more times +#endif + } + /* If the whole input has less than MIN_MATCH bytes, ins_h is garbage, + * but this is not important since only literal bytes will be emitted. + */ + + } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0); +} + +/* =========================================================================== + * Flush the current block, with given end-of-file flag. + * IN assertion: strstart is set to the end of the current match. + */ +#define FLUSH_BLOCK_ONLY(s, eof) { \ + ct_flush_block(s, (s->block_start >= 0L ? \ + (charf *)&s->window[(unsigned)s->block_start] : \ + (charf *)Z_NULL), (long)s->strstart - s->block_start, (eof)); \ + s->block_start = s->strstart; \ + flush_pending(s->strm); \ + Tracev((stderr,"[FLUSH]")); \ +} + +/* Same but force premature exit if necessary. */ +#define FLUSH_BLOCK(s, eof) { \ + FLUSH_BLOCK_ONLY(s, eof); \ + if (s->strm->avail_out == 0) return 1; \ +} + +/* =========================================================================== + * Compress as much as possible from the input stream, return true if + * processing was terminated prematurely (no more input or output space). + * This function does not perform lazy evaluationof matches and inserts + * new strings in the dictionary only for unmatched strings or for short + * matches. It is used only for the fast compression options. + */ +local int deflate_fast(s, flush) + deflate_state *s; + int flush; +{ + IPos hash_head; /* head of the hash chain */ + int bflush; /* set if current block must be flushed */ + + s->prev_length = MIN_MATCH-1; + + for (;;) { + /* Make sure that we always have enough lookahead, except + * at the end of the input file. We need MAX_MATCH bytes + * for the next match, plus MIN_MATCH bytes to insert the + * string following the next match. + */ + if (s->lookahead < MIN_LOOKAHEAD) { + fill_window(s); + if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) return 1; + + if (s->lookahead == 0) break; /* flush the current block */ + } + + /* Insert the string window[strstart .. strstart+2] in the + * dictionary, and set hash_head to the head of the hash chain: + */ + if (s->lookahead >= MIN_MATCH) { + INSERT_STRING(s, s->strstart, hash_head); + } + + /* Find the longest match, discarding those <= prev_length. + * At this point we have always match_length < MIN_MATCH + */ + if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) { + /* To simplify the code, we prevent matches with the string + * of window index 0 (in particular we have to avoid a match + * of the string with itself at the start of the input file). + */ + if (s->strategy != Z_HUFFMAN_ONLY) { + s->match_length = longest_match (s, hash_head); + } + /* longest_match() sets match_start */ + + if (s->match_length > s->lookahead) s->match_length = s->lookahead; + } + if (s->match_length >= MIN_MATCH) { + check_match(s, s->strstart, s->match_start, s->match_length); + + bflush = ct_tally(s, s->strstart - s->match_start, + s->match_length - MIN_MATCH); + + s->lookahead -= s->match_length; + + /* Insert new strings in the hash table only if the match length + * is not too large. This saves time but degrades compression. + */ + if (s->match_length <= s->max_insert_length && + s->lookahead >= MIN_MATCH) { + s->match_length--; /* string at strstart already in hash table */ + do { + s->strstart++; + INSERT_STRING(s, s->strstart, hash_head); + /* strstart never exceeds WSIZE-MAX_MATCH, so there are + * always MIN_MATCH bytes ahead. + */ + } while (--s->match_length != 0); + s->strstart++; + } else { + s->strstart += s->match_length; + s->match_length = 0; + s->ins_h = s->window[s->strstart]; + UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]); +#if MIN_MATCH != 3 + Call UPDATE_HASH() MIN_MATCH-3 more times +#endif + /* If lookahead < MIN_MATCH, ins_h is garbage, but it does not + * matter since it will be recomputed at next deflate call. + */ + } + } else { + /* No match, output a literal byte */ + Tracevv((stderr,"%c", s->window[s->strstart])); + bflush = ct_tally (s, 0, s->window[s->strstart]); + s->lookahead--; + s->strstart++; + } + if (bflush) FLUSH_BLOCK(s, 0); + } + FLUSH_BLOCK(s, flush == Z_FINISH); + return 0; /* normal exit */ +} + +/* =========================================================================== + * Same as above, but achieves better compression. We use a lazy + * evaluation for matches: a match is finally adopted only if there is + * no better match at the next window position. + */ +local int deflate_slow(s, flush) + deflate_state *s; + int flush; +{ + IPos hash_head; /* head of hash chain */ + int bflush; /* set if current block must be flushed */ + + /* Process the input block. */ + for (;;) { + /* Make sure that we always have enough lookahead, except + * at the end of the input file. We need MAX_MATCH bytes + * for the next match, plus MIN_MATCH bytes to insert the + * string following the next match. + */ + if (s->lookahead < MIN_LOOKAHEAD) { + fill_window(s); + if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) return 1; + + if (s->lookahead == 0) break; /* flush the current block */ + } + + /* Insert the string window[strstart .. strstart+2] in the + * dictionary, and set hash_head to the head of the hash chain: + */ + if (s->lookahead >= MIN_MATCH) { + INSERT_STRING(s, s->strstart, hash_head); + } + + /* Find the longest match, discarding those <= prev_length. + */ + s->prev_length = s->match_length, s->prev_match = s->match_start; + s->match_length = MIN_MATCH-1; + + if (hash_head != NIL && s->prev_length < s->max_lazy_match && + s->strstart - hash_head <= MAX_DIST(s)) { + /* To simplify the code, we prevent matches with the string + * of window index 0 (in particular we have to avoid a match + * of the string with itself at the start of the input file). + */ + if (s->strategy != Z_HUFFMAN_ONLY) { + s->match_length = longest_match (s, hash_head); + } + /* longest_match() sets match_start */ + if (s->match_length > s->lookahead) s->match_length = s->lookahead; + + if (s->match_length <= 5 && (s->strategy == Z_FILTERED || + (s->match_length == MIN_MATCH && + s->strstart - s->match_start > TOO_FAR))) { + + /* If prev_match is also MIN_MATCH, match_start is garbage + * but we will ignore the current match anyway. + */ + s->match_length = MIN_MATCH-1; + } + } + /* If there was a match at the previous step and the current + * match is not better, output the previous match: + */ + if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) { + uInt max_insert = s->strstart + s->lookahead - MIN_MATCH; + /* Do not insert strings in hash table beyond this. */ + + check_match(s, s->strstart-1, s->prev_match, s->prev_length); + + bflush = ct_tally(s, s->strstart -1 - s->prev_match, + s->prev_length - MIN_MATCH); + + /* Insert in hash table all strings up to the end of the match. + * strstart-1 and strstart are already inserted. If there is not + * enough lookahead, the last two strings are not inserted in + * the hash table. + */ + s->lookahead -= s->prev_length-1; + s->prev_length -= 2; + do { + if (++s->strstart <= max_insert) { + INSERT_STRING(s, s->strstart, hash_head); + } + } while (--s->prev_length != 0); + s->match_available = 0; + s->match_length = MIN_MATCH-1; + s->strstart++; + + if (bflush) FLUSH_BLOCK(s, 0); + + } else if (s->match_available) { + /* If there was no match at the previous position, output a + * single literal. If there was a match but the current match + * is longer, truncate the previous match to a single literal. + */ + Tracevv((stderr,"%c", s->window[s->strstart-1])); + if (ct_tally (s, 0, s->window[s->strstart-1])) { + FLUSH_BLOCK_ONLY(s, 0); + } + s->strstart++; + s->lookahead--; + if (s->strm->avail_out == 0) return 1; + } else { + /* There is no previous match to compare with, wait for + * the next step to decide. + */ + s->match_available = 1; + s->strstart++; + s->lookahead--; + } + } + Assert (flush != Z_NO_FLUSH, "no flush?"); + if (s->match_available) { + Tracevv((stderr,"%c", s->window[s->strstart-1])); + ct_tally (s, 0, s->window[s->strstart-1]); + s->match_available = 0; + } + FLUSH_BLOCK(s, flush == Z_FINISH); + return 0; +} +