diff src/zlib/deflate.c @ 10:1040ca591f2e

First entry of Paradise Server 2.9 patch 10 Beta
author darius
date Sat, 06 Dec 1997 04:37:18 +0000
parents
children
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/zlib/deflate.c	Sat Dec 06 04:37:18 1997 +0000
@@ -0,0 +1,963 @@
+/* deflate.c -- compress data using the deflation algorithm
+ * Copyright (C) 1995 Jean-loup Gailly.
+ * For conditions of distribution and use, see copyright notice in zlib.h 
+ */
+
+/*
+ *  ALGORITHM
+ *
+ *      The "deflation" process depends on being able to identify portions
+ *      of the input text which are identical to earlier input (within a
+ *      sliding window trailing behind the input currently being processed).
+ *
+ *      The most straightforward technique turns out to be the fastest for
+ *      most input files: try all possible matches and select the longest.
+ *      The key feature of this algorithm is that insertions into the string
+ *      dictionary are very simple and thus fast, and deletions are avoided
+ *      completely. Insertions are performed at each input character, whereas
+ *      string matches are performed only when the previous match ends. So it
+ *      is preferable to spend more time in matches to allow very fast string
+ *      insertions and avoid deletions. The matching algorithm for small
+ *      strings is inspired from that of Rabin & Karp. A brute force approach
+ *      is used to find longer strings when a small match has been found.
+ *      A similar algorithm is used in comic (by Jan-Mark Wams) and freeze
+ *      (by Leonid Broukhis).
+ *         A previous version of this file used a more sophisticated algorithm
+ *      (by Fiala and Greene) which is guaranteed to run in linear amortized
+ *      time, but has a larger average cost, uses more memory and is patented.
+ *      However the F&G algorithm may be faster for some highly redundant
+ *      files if the parameter max_chain_length (described below) is too large.
+ *
+ *  ACKNOWLEDGEMENTS
+ *
+ *      The idea of lazy evaluation of matches is due to Jan-Mark Wams, and
+ *      I found it in 'freeze' written by Leonid Broukhis.
+ *      Thanks to many people for bug reports and testing.
+ *
+ *  REFERENCES
+ *
+ *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
+ *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
+ *
+ *      A description of the Rabin and Karp algorithm is given in the book
+ *         "Algorithms" by R. Sedgewick, Addison-Wesley, p252.
+ *
+ *      Fiala,E.R., and Greene,D.H.
+ *         Data Compression with Finite Windows, Comm.ACM, 32,4 (1989) 490-595
+ *
+ */
+
+/* $Id: deflate.c,v 1.1.1.1 1997/12/06 04:37:16 darius Exp $ */
+
+#include "deflate.h"
+
+char copyright[] = " deflate Copyright 1995 Jean-loup Gailly ";
+/*
+  If you use the zlib library in a product, an acknowledgment is welcome
+  in the documentation of your product. If for some reason you cannot
+  include such an acknowledgment, I would appreciate that you keep this
+  copyright string in the executable of your product.
+ */
+
+#define NIL 0
+/* Tail of hash chains */
+
+#ifndef TOO_FAR
+#  define TOO_FAR 4096
+#endif
+/* Matches of length 3 are discarded if their distance exceeds TOO_FAR */
+
+#define MIN_LOOKAHEAD (MAX_MATCH+MIN_MATCH+1)
+/* Minimum amount of lookahead, except at the end of the input file.
+ * See deflate.c for comments about the MIN_MATCH+1.
+ */
+
+/* Values for max_lazy_match, good_match and max_chain_length, depending on
+ * the desired pack level (0..9). The values given below have been tuned to
+ * exclude worst case performance for pathological files. Better values may be
+ * found for specific files.
+ */
+
+typedef struct config_s {
+   ush good_length; /* reduce lazy search above this match length */
+   ush max_lazy;    /* do not perform lazy search above this match length */
+   ush nice_length; /* quit search above this match length */
+   ush max_chain;
+} config;
+
+local config configuration_table[10] = {
+/*      good lazy nice chain */
+/* 0 */ {0,    0,  0,    0},  /* store only */
+/* 1 */ {4,    4,  8,    4},  /* maximum speed, no lazy matches */
+/* 2 */ {4,    5, 16,    8},
+/* 3 */ {4,    6, 32,   32},
+
+/* 4 */ {4,    4, 16,   16},  /* lazy matches */
+/* 5 */ {8,   16, 32,   32},
+/* 6 */ {8,   16, 128, 128},
+/* 7 */ {8,   32, 128, 256},
+/* 8 */ {32, 128, 258, 1024},
+/* 9 */ {32, 258, 258, 4096}}; /* maximum compression */
+
+/* Note: the deflate() code requires max_lazy >= MIN_MATCH and max_chain >= 4
+ * For deflate_fast() (levels <= 3) good is ignored and lazy has a different
+ * meaning.
+ */
+
+#define EQUAL 0
+/* result of memcmp for equal strings */
+
+struct static_tree_desc_s {int dummy;}; /* for buggy compilers */
+
+/* ===========================================================================
+ *  Prototypes for local functions.
+ */
+
+local void fill_window   __P((deflate_state *s));
+local int  deflate_fast  __P((deflate_state *s, int flush));
+local int  deflate_slow  __P((deflate_state *s, int flush));
+local void lm_init       __P((deflate_state *s));
+local int  longest_match __P((deflate_state *s, IPos cur_match));
+local void putShortMSB   __P((deflate_state *s, uInt b));
+local void flush_pending __P((z_stream *strm));
+local int read_buf       __P((z_stream *strm, char *buf, unsigned size));
+#ifdef ASMV
+      void match_init __P((void)); /* asm code initialization */
+#endif
+
+#ifdef DEBUG
+local  void check_match __P((deflate_state *s, IPos start, IPos match,
+                             int length));
+#endif
+
+
+/* ===========================================================================
+ * Update a hash value with the given input byte
+ * IN  assertion: all calls to to UPDATE_HASH are made with consecutive
+ *    input characters, so that a running hash key can be computed from the
+ *    previous key instead of complete recalculation each time.
+ */
+#define UPDATE_HASH(s,h,c) (h = (((h)<<s->hash_shift) ^ (c)) & s->hash_mask)
+
+/* ===========================================================================
+ * Insert string str in the dictionary and set match_head to the previous head
+ * of the hash chain (the most recent string with same hash key). Return
+ * the previous length of the hash chain.
+ * IN  assertion: all calls to to INSERT_STRING are made with consecutive
+ *    input characters and the first MIN_MATCH bytes of str are valid
+ *    (except for the last MIN_MATCH-1 bytes of the input file).
+ */
+#define INSERT_STRING(s, str, match_head) \
+   (UPDATE_HASH(s, s->ins_h, s->window[(str) + MIN_MATCH-1]), \
+    s->prev[(str) & s->w_mask] = match_head = s->head[s->ins_h], \
+    s->head[s->ins_h] = (str))
+
+/* ===========================================================================
+ * Initialize the hash table (avoiding 64K overflow for 16 bit systems).
+ * prev[] will be initialized on the fly.
+ */
+#define CLEAR_HASH(s) \
+    s->head[s->hash_size-1] = NIL; \
+    zmemzero((char*)s->head, (unsigned)(s->hash_size-1)*sizeof(*s->head));
+
+/* ========================================================================= */
+int deflateInit (strm, level)
+    z_stream *strm;
+    int level;
+{
+    return deflateInit2 (strm, level, DEFLATED, MAX_WBITS, DEF_MEM_LEVEL, 0);
+    /* To do: ignore strm->next_in if we use it as window */
+}
+
+/* ========================================================================= */
+int deflateInit2 (strm, level, method, windowBits, memLevel, strategy)
+    z_stream *strm;
+    int  level;
+    int  method;
+    int  windowBits;
+    int  memLevel;
+    int  strategy;
+{
+    deflate_state *s;
+    int noheader = 0;
+
+    if (strm == Z_NULL) return Z_STREAM_ERROR;
+
+    strm->msg = Z_NULL;
+    if (strm->zalloc == Z_NULL) strm->zalloc = zcalloc;
+    if (strm->zfree == Z_NULL) strm->zfree = zcfree;
+
+    if (level == Z_DEFAULT_COMPRESSION) level = 6;
+
+    if (windowBits < 0) { /* undocumented feature: suppress zlib header */
+        noheader = 1;
+        windowBits = -windowBits;
+    }
+    if (memLevel < 1 || memLevel > MAX_MEM_LEVEL || method != DEFLATED ||
+        windowBits < 8 || windowBits > 15 || level < 1 || level > 9) {
+        return Z_STREAM_ERROR;
+    }
+    s = (deflate_state *) ZALLOC(strm, 1, sizeof(deflate_state));
+    if (s == Z_NULL) return Z_MEM_ERROR;
+    strm->state = (struct internal_state *)s;
+    s->strm = strm;
+
+    s->noheader = noheader;
+    s->w_bits = windowBits;
+    s->w_size = 1 << s->w_bits;
+    s->w_mask = s->w_size - 1;
+
+    s->hash_bits = memLevel + 7;
+    s->hash_size = 1 << s->hash_bits;
+    s->hash_mask = s->hash_size - 1;
+    s->hash_shift =  ((s->hash_bits+MIN_MATCH-1)/MIN_MATCH);
+
+    s->window = (Byte*) ZALLOC(strm, s->w_size, 2*sizeof(Byte));
+    s->prev   = (Pos*)  ZALLOC(strm, s->w_size, sizeof(Pos));
+    s->head   = (Pos*)  ZALLOC(strm, s->hash_size, sizeof(Pos));
+
+    s->lit_bufsize = 1 << (memLevel + 6); /* 16K elements by default */
+
+    s->pending_buf = (uch*) ZALLOC(strm, s->lit_bufsize, 2*sizeof(ush));
+
+    if (s->window == Z_NULL || s->prev == Z_NULL || s->head == Z_NULL ||
+        s->pending_buf == Z_NULL) {
+        strm->msg = z_errmsg[1-Z_MEM_ERROR];
+        deflateEnd (strm);
+        return Z_MEM_ERROR;
+    }
+    s->d_buf = (ush*) &(s->pending_buf[s->lit_bufsize]);
+    s->l_buf = (uch*) &(s->pending_buf[3*s->lit_bufsize]);
+    /* We overlay pending_buf and d_buf+l_buf. This works since the average
+     * output size for (length,distance) codes is <= 32 bits (worst case
+     * is 15+15+13=33).
+     */
+
+    s->level = level;
+    s->strategy = strategy;
+    s->method = (Byte)method;
+
+    return deflateReset(strm);
+}
+
+/* ========================================================================= */
+int deflateReset (strm)
+    z_stream *strm;
+{
+    deflate_state *s;
+    
+    if (strm == Z_NULL || strm->state == Z_NULL ||
+        strm->zalloc == Z_NULL || strm->zfree == Z_NULL) return Z_STREAM_ERROR;
+
+    strm->total_in = strm->total_out = 0;
+    strm->msg = Z_NULL; /* use zfree if we ever allocate msg dynamically */
+    strm->data_type = Z_UNKNOWN;
+
+    s = (deflate_state *)strm->state;
+    s->pending = 0;
+    s->pending_out = s->pending_buf;
+
+    s->status = s->noheader ? BUSY_STATE : INIT_STATE;
+    s->adler = 1;
+
+    ct_init(s);
+    lm_init(s);
+
+    return Z_OK;
+}
+
+/* =========================================================================
+ * Put a short the pending_out buffer. The 16-bit value is put in MSB order.
+ * IN assertion: the stream state is correct and there is enough room in
+ * the pending_out buffer.
+ */
+local void putShortMSB (s, b)
+    deflate_state *s;
+    uInt b;
+{
+    put_byte(s, (Byte)(b >> 8));
+    put_byte(s, (Byte)(b & 0xff));
+}   
+
+/* =========================================================================
+ * Flush as much pending output as possible.
+ */
+local void flush_pending(strm)
+    z_stream *strm;
+{
+    unsigned len = strm->state->pending;
+
+    if (len > strm->avail_out) len = strm->avail_out;
+    if (len == 0) return;
+
+    zmemcpy(strm->next_out, strm->state->pending_out, len);
+    strm->next_out  += len;
+    strm->state->pending_out  += len;
+    strm->total_out += len;
+    strm->avail_out  -= len;
+    strm->state->pending -= len;
+    if (strm->state->pending == 0) {
+        strm->state->pending_out = strm->state->pending_buf;
+    }
+}
+
+/* ========================================================================= */
+int deflate (strm, flush)
+    z_stream *strm;
+    int flush;
+{
+    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
+    
+    if (strm->next_out == Z_NULL || strm->next_in == Z_NULL) {
+        ERR_RETURN(strm, Z_STREAM_ERROR);
+    }
+    if (strm->avail_out == 0) ERR_RETURN(strm, Z_BUF_ERROR);
+
+    strm->state->strm = strm; /* just in case */
+
+    /* Write the zlib header */
+    if (strm->state->status == INIT_STATE) {
+
+        uInt header = (DEFLATED + ((strm->state->w_bits-8)<<4)) << 8;
+        uInt level_flags = (strm->state->level-1) >> 1;
+
+        if (level_flags > 3) level_flags = 3;
+        header |= (level_flags << 6);
+        header += 31 - (header % 31);
+
+        strm->state->status = BUSY_STATE;
+        putShortMSB(strm->state, header);
+    }
+
+    /* Flush as much pending output as possible */
+    if (strm->state->pending != 0) {
+        flush_pending(strm);
+        if (strm->avail_out == 0) return Z_OK;
+    }
+
+    /* User must not provide more input after the first FINISH: */
+    if (strm->state->status == FINISH_STATE && strm->avail_in != 0) {
+        ERR_RETURN(strm, Z_BUF_ERROR);
+    }
+
+    /* Start a new block or continue the current one.
+     */
+    if (strm->avail_in != 0 ||
+        (flush == Z_FINISH && strm->state->status != FINISH_STATE)) {
+        int quit;
+        
+        if (flush == Z_FINISH) {
+            strm->state->status = FINISH_STATE;
+        }
+        if (strm->state->level <= 3) {
+            quit = deflate_fast(strm->state, flush);
+        } else {
+            quit = deflate_slow(strm->state, flush);
+        }
+        if (flush == Z_FULL_FLUSH) {
+            ct_stored_block(strm->state, (char*)0, 0L, 0); /* special marker */
+            flush_pending(strm);
+            CLEAR_HASH(strm->state);             /* forget history */
+            if (strm->avail_out == 0) return Z_OK;
+        }
+        if (quit) return Z_OK;
+    }
+    Assert(strm->avail_out > 0, "bug2");
+
+    if (flush != Z_FINISH) return Z_OK;
+    if (strm->state->noheader) return Z_STREAM_END;
+
+    /* Write the zlib trailer (adler32) */
+    putShortMSB(strm->state, (uInt)(strm->state->adler >> 16));
+    putShortMSB(strm->state, (uInt)(strm->state->adler & 0xffff));
+    flush_pending(strm);
+    /* If avail_out is zero, the application will call deflate again
+     * to flush the rest.
+     */
+    strm->state->noheader = 1; /* write the trailer only once! */
+    return strm->state->pending != 0 ? Z_OK : Z_STREAM_END;
+}
+
+/* ========================================================================= */
+int deflateEnd (strm)
+    z_stream *strm;
+{
+    if (strm == Z_NULL || strm->state == Z_NULL) return Z_STREAM_ERROR;
+
+    TRY_FREE(strm, strm->state->window);
+    TRY_FREE(strm, strm->state->prev);
+    TRY_FREE(strm, strm->state->head);
+    TRY_FREE(strm, strm->state->pending_buf);
+
+    ZFREE(strm, strm->state);
+    strm->state = Z_NULL;
+
+    return Z_OK;
+}
+
+/* ========================================================================= */
+int deflateCopy (dest, source)
+    z_stream *dest;
+    z_stream *source;
+{
+    if (source == Z_NULL || dest == Z_NULL || source->state == Z_NULL) {
+        return Z_STREAM_ERROR;
+    }
+    *dest = *source;
+    return Z_STREAM_ERROR; /* to be implemented */
+#if 0
+    dest->state = (struct internal_state *)
+        (*dest->zalloc)(1, sizeof(deflate_state));
+    if (dest->state == Z_NULL) return Z_MEM_ERROR;
+
+    *(dest->state) = *(source->state);
+    return Z_OK;
+#endif
+}
+
+/* ===========================================================================
+ * Read a new buffer from the current input stream, update the adler32
+ * and total number of bytes read.
+ */
+local int read_buf(strm, buf, size)
+    z_stream *strm;
+    char *buf;
+    unsigned size;
+{
+    unsigned len = strm->avail_in;
+
+    if (len > size) len = size;
+    if (len == 0) return 0;
+
+    strm->avail_in  -= len;
+
+    if (!strm->state->noheader) {
+        strm->state->adler = adler32(strm->state->adler, strm->next_in, len);
+    }
+    zmemcpy(buf, strm->next_in, len);
+    strm->next_in  += len;
+    strm->total_in += len;
+
+    return (int)len;
+}
+
+/* ===========================================================================
+ * Initialize the "longest match" routines for a new zlib stream
+ */
+local void lm_init (s)
+    deflate_state *s;
+{
+    register unsigned j;
+
+    s->window_size = (ulg)2L*s->w_size;
+
+    CLEAR_HASH(s);
+
+    /* Set the default configuration parameters:
+     */
+    s->max_lazy_match   = configuration_table[s->level].max_lazy;
+    s->good_match       = configuration_table[s->level].good_length;
+    s->nice_match       = configuration_table[s->level].nice_length;
+    s->max_chain_length = configuration_table[s->level].max_chain;
+
+    s->strstart = 0;
+    s->block_start = 0L;
+    s->lookahead = 0;
+    s->match_length = MIN_MATCH-1;
+    s->match_available = 0;
+#ifdef ASMV
+    match_init(); /* initialize the asm code */
+#endif
+
+    s->ins_h = 0;
+    for (j=0; j<MIN_MATCH-1; j++) UPDATE_HASH(s, s->ins_h, s->window[j]);
+    /* If lookahead < MIN_MATCH, ins_h is garbage, but this is
+     * not important since only literal bytes will be emitted.
+     */
+}
+
+/* ===========================================================================
+ * Set match_start to the longest match starting at the given string and
+ * return its length. Matches shorter or equal to prev_length are discarded,
+ * in which case the result is equal to prev_length and match_start is
+ * garbage.
+ * IN assertions: cur_match is the head of the hash chain for the current
+ *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
+ */
+#ifndef ASMV
+/* For 80x86 and 680x0, an optimized version will be provided in match.asm or
+ * match.S. The code will be functionally equivalent.
+ */
+local INLINE int longest_match(s, cur_match)
+    deflate_state *s;
+    IPos cur_match;                             /* current match */
+{
+    unsigned chain_length = s->max_chain_length;/* max hash chain length */
+    register Byte *scan = s->window + s->strstart; /* current string */
+    register Byte *match;                       /* matched string */
+    register int len;                           /* length of current match */
+    int best_len = s->prev_length;              /* best match length so far */
+    IPos limit = s->strstart > (IPos)MAX_DIST(s) ?
+        s->strstart - (IPos)MAX_DIST(s) : NIL;
+    /* Stop when cur_match becomes <= limit. To simplify the code,
+     * we prevent matches with the string of window index 0.
+     */
+    Pos *prev = s->prev;
+    uInt wmask = s->w_mask;
+
+#ifdef UNALIGNED_OK
+    /* Compare two bytes at a time. Note: this is not always beneficial.
+     * Try with and without -DUNALIGNED_OK to check.
+     */
+    register Byte *strend = s->window + s->strstart + MAX_MATCH - 1;
+    register ush scan_start = *(ush*)scan;
+    register ush scan_end   = *(ush*)(scan+best_len-1);
+#else
+    register Byte *strend = s->window + s->strstart + MAX_MATCH;
+    register Byte scan_end1  = scan[best_len-1];
+    register Byte scan_end   = scan[best_len];
+#endif
+
+    /* The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
+     * It is easy to get rid of this optimization if necessary.
+     */
+    Assert(s->hash_bits >= 8 && MAX_MATCH == 258, "Code too clever");
+
+    /* Do not waste too much time if we already have a good match: */
+    if (s->prev_length >= s->good_match) {
+        chain_length >>= 2;
+    }
+    Assert(s->strstart <= s->window_size-MIN_LOOKAHEAD, "need lookahead");
+
+    do {
+        Assert(cur_match < s->strstart, "no future");
+        match = s->window + cur_match;
+
+        /* Skip to next match if the match length cannot increase
+         * or if the match length is less than 2:
+         */
+#if (defined(UNALIGNED_OK) && MAX_MATCH == 258)
+        /* This code assumes sizeof(unsigned short) == 2. Do not use
+         * UNALIGNED_OK if your compiler uses a different size.
+         */
+        if (*(ush*)(match+best_len-1) != scan_end ||
+            *(ush*)match != scan_start) continue;
+
+        /* It is not necessary to compare scan[2] and match[2] since they are
+         * always equal when the other bytes match, given that the hash keys
+         * are equal and that HASH_BITS >= 8. Compare 2 bytes at a time at
+         * strstart+3, +5, ... up to strstart+257. We check for insufficient
+         * lookahead only every 4th comparison; the 128th check will be made
+         * at strstart+257. If MAX_MATCH-2 is not a multiple of 8, it is
+         * necessary to put more guard bytes at the end of the window, or
+         * to check more often for insufficient lookahead.
+         */
+        scan++, match++;
+        do {
+        } while (*(ush*)(scan+=2) == *(ush*)(match+=2) &&
+                 *(ush*)(scan+=2) == *(ush*)(match+=2) &&
+                 *(ush*)(scan+=2) == *(ush*)(match+=2) &&
+                 *(ush*)(scan+=2) == *(ush*)(match+=2) &&
+                 scan < strend);
+        /* The funny "do {}" generates better code on most compilers */
+
+        /* Here, scan <= window+strstart+257 */
+        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
+        if (*scan == *match) scan++;
+
+        len = (MAX_MATCH - 1) - (int)(strend-scan);
+        scan = strend - (MAX_MATCH-1);
+
+#else /* UNALIGNED_OK */
+
+        if (match[best_len]   != scan_end  ||
+            match[best_len-1] != scan_end1 ||
+            *match            != *scan     ||
+            *++match          != scan[1])      continue;
+
+        /* The check at best_len-1 can be removed because it will be made
+         * again later. (This heuristic is not always a win.)
+         * It is not necessary to compare scan[2] and match[2] since they
+         * are always equal when the other bytes match, given that
+         * the hash keys are equal and that HASH_BITS >= 8.
+         */
+        scan += 2, match++;
+
+        /* We check for insufficient lookahead only every 8th comparison;
+         * the 256th check will be made at strstart+258.
+         */
+        do {
+        } while (*++scan == *++match && *++scan == *++match &&
+                 *++scan == *++match && *++scan == *++match &&
+                 *++scan == *++match && *++scan == *++match &&
+                 *++scan == *++match && *++scan == *++match &&
+                 scan < strend);
+
+        Assert(scan <= s->window+(unsigned)(s->window_size-1), "wild scan");
+
+        len = MAX_MATCH - (int)(strend - scan);
+        scan = strend - MAX_MATCH;
+
+#endif /* UNALIGNED_OK */
+
+        if (len > best_len) {
+            s->match_start = cur_match;
+            best_len = len;
+            if (len >= s->nice_match) break;
+#ifdef UNALIGNED_OK
+            scan_end = *(ush*)(scan+best_len-1);
+#else
+            scan_end1  = scan[best_len-1];
+            scan_end   = scan[best_len];
+#endif
+        }
+    } while ((cur_match = prev[cur_match & wmask]) > limit
+             && --chain_length != 0);
+
+    return best_len;
+}
+#endif /* ASMV */
+
+#ifdef DEBUG
+/* ===========================================================================
+ * Check that the match at match_start is indeed a match.
+ */
+local void check_match(s, start, match, length)
+    deflate_state *s;
+    IPos start, match;
+    int length;
+{
+    /* check that the match is indeed a match */
+    if (memcmp((char*)s->window + match,
+                (char*)s->window + start, length) != EQUAL) {
+        fprintf(stderr,
+            " start %d, match %d, length %d\n",
+            start, match, length);
+        z_error("invalid match");
+    }
+    if (verbose > 1) {
+        fprintf(stderr,"\\[%d,%d]", start-match, length);
+        do { putc(s->window[start++], stderr); } while (--length != 0);
+    }
+}
+#else
+#  define check_match(s, start, match, length)
+#endif
+
+/* ===========================================================================
+ * Fill the window when the lookahead becomes insufficient.
+ * Updates strstart and lookahead.
+ *
+ * IN assertion: lookahead < MIN_LOOKAHEAD
+ * OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
+ *    At least one byte has been read, or avail_in == 0; reads are
+ *    performed for at least two bytes (required for the zip translate_eol
+ *    option -- not supported here).
+ */
+local void fill_window(s)
+    deflate_state *s;
+{
+    register unsigned n, m;
+    register Pos *p;
+    unsigned more;    /* Amount of free space at the end of the window. */
+    uInt wsize = s->w_size;
+
+    do {
+        more = (unsigned)(s->window_size -(ulg)s->lookahead -(ulg)s->strstart);
+
+        /* Deal with !@#$% 64K limit: */
+        if (more == 0 && s->strstart == 0 && s->lookahead == 0) {
+            more = wsize;
+        } else if (more == (unsigned)(-1)) {
+            /* Very unlikely, but possible on 16 bit machine if strstart == 0
+             * and lookahead == 1 (input done one byte at time)
+             */
+            more--;
+
+        /* If the window is almost full and there is insufficient lookahead,
+         * move the upper half to the lower one to make room in the upper half.
+         */
+        } else if (s->strstart >= wsize+MAX_DIST(s)) {
+
+            /* By the IN assertion, the window is not empty so we can't confuse
+             * more == 0 with more == 64K on a 16 bit machine.
+             */
+            zmemcpy((char*)s->window, (char*)s->window+wsize,
+                   (unsigned)wsize);
+            s->match_start -= wsize;
+            s->strstart    -= wsize; /* we now have strstart >= MAX_DIST */
+
+            s->block_start -= (long) wsize;
+
+            /* Slide the hash table (could be avoided with 32 bit values
+               at the expense of memory usage):
+             */
+            n = s->hash_size;
+            p = &s->head[n-1];
+            do {
+                m = *p;
+                *p-- = (Pos)(m >= wsize ? m-wsize : NIL);
+            } while (--n);
+
+            n = wsize;
+            p = &s->prev[n-1];
+            do {
+                m = *p;
+                *p-- = (Pos)(m >= wsize ? m-wsize : NIL);
+                /* If n is not on any hash chain, prev[n] is garbage but
+                 * its value will never be used.
+                 */
+            } while (--n);
+
+            more += wsize;
+        }
+        if (s->strm->avail_in == 0) return;
+
+        /* If there was no sliding:
+         *    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
+         *    more == window_size - lookahead - strstart
+         * => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
+         * => more >= window_size - 2*WSIZE + 2
+         * In the BIG_MEM or MMAP case (not yet supported),
+         *   window_size == input_size + MIN_LOOKAHEAD  &&
+         *   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
+         * Otherwise, window_size == 2*WSIZE so more >= 2.
+         * If there was sliding, more >= WSIZE. So in all cases, more >= 2.
+         */
+        Assert(more >= 2, "more < 2");
+
+        n = read_buf(s->strm, (char*)s->window + s->strstart + s->lookahead,
+                     more);
+        s->lookahead += n;
+
+    } while (s->lookahead < MIN_LOOKAHEAD && s->strm->avail_in != 0);
+}
+
+/* ===========================================================================
+ * Flush the current block, with given end-of-file flag.
+ * IN assertion: strstart is set to the end of the current match.
+ */
+#define FLUSH_BLOCK_ONLY(s, eof) { \
+   ct_flush_block(s, (s->block_start >= 0L ? \
+               (char*)&s->window[(unsigned)s->block_start] : \
+               (char*)Z_NULL), (long)s->strstart - s->block_start, (eof)); \
+   s->block_start = s->strstart; \
+   flush_pending(s->strm); \
+}
+
+/* Same but force premature exit if necessary. */
+#define FLUSH_BLOCK(s, eof) { \
+   FLUSH_BLOCK_ONLY(s, eof); \
+   if (s->strm->avail_out == 0) return 1; \
+}
+
+/* ===========================================================================
+ * Compress as much as possible from the input stream, return true if
+ * processing was terminated prematurely (no more input or output space).
+ * This function does not perform lazy evaluationof matches and inserts
+ * new strings in the dictionary only for unmatched strings or for short
+ * matches. It is used only for the fast compression options.
+ */
+local int deflate_fast(s, flush)
+    deflate_state *s;
+    int flush;
+{
+    IPos hash_head; /* head of the hash chain */
+    int bflush;     /* set if current block must be flushed */
+
+    s->prev_length = MIN_MATCH-1;
+
+    for (;;) {
+        /* Make sure that we always have enough lookahead, except
+         * at the end of the input file. We need MAX_MATCH bytes
+         * for the next match, plus MIN_MATCH bytes to insert the
+         * string following the next match.
+         */
+        if (s->lookahead < MIN_LOOKAHEAD) {
+            fill_window(s);
+            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) return 1;
+
+            if (s->lookahead == 0) break; /* flush the current block */
+        }
+
+        /* Insert the string window[strstart .. strstart+2] in the
+         * dictionary, and set hash_head to the head of the hash chain:
+         */
+        INSERT_STRING(s, s->strstart, hash_head);
+
+        /* Find the longest match, discarding those <= prev_length.
+         * At this point we have always match_length < MIN_MATCH
+         */
+        if (hash_head != NIL && s->strstart - hash_head <= MAX_DIST(s)) {
+            /* To simplify the code, we prevent matches with the string
+             * of window index 0 (in particular we have to avoid a match
+             * of the string with itself at the start of the input file).
+             */
+            if (s->strategy != Z_HUFFMAN_ONLY) {
+                s->match_length = longest_match (s, hash_head);
+            }
+            /* longest_match() sets match_start */
+
+            if (s->match_length > s->lookahead) s->match_length = s->lookahead;
+        }
+        if (s->match_length >= MIN_MATCH) {
+            check_match(s, s->strstart, s->match_start, s->match_length);
+
+            bflush = ct_tally(s, s->strstart - s->match_start,
+                              s->match_length - MIN_MATCH);
+
+            s->lookahead -= s->match_length;
+
+            /* Insert new strings in the hash table only if the match length
+             * is not too large. This saves time but degrades compression.
+             */
+            if (s->match_length <= s->max_insert_length) {
+                s->match_length--; /* string at strstart already in hash table */
+                do {
+                    s->strstart++;
+                    INSERT_STRING(s, s->strstart, hash_head);
+                    /* strstart never exceeds WSIZE-MAX_MATCH, so there are
+                     * always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH
+                     * these bytes are garbage, but it does not matter since
+                     * the next lookahead bytes will be emitted as literals.
+                     */
+                } while (--s->match_length != 0);
+                s->strstart++; 
+            } else {
+                s->strstart += s->match_length;
+                s->match_length = 0;
+                s->ins_h = s->window[s->strstart];
+                UPDATE_HASH(s, s->ins_h, s->window[s->strstart+1]);
+#if MIN_MATCH != 3
+                Call UPDATE_HASH() MIN_MATCH-3 more times
+#endif
+            }
+        } else {
+            /* No match, output a literal byte */
+            Tracevv((stderr,"%c", s->window[s->strstart]));
+            bflush = ct_tally (s, 0, s->window[s->strstart]);
+            s->lookahead--;
+            s->strstart++; 
+        }
+        if (bflush) FLUSH_BLOCK(s, 0);
+    }
+    FLUSH_BLOCK(s, flush == Z_FINISH);
+    return 0; /* normal exit */
+}
+
+/* ===========================================================================
+ * Same as above, but achieves better compression. We use a lazy
+ * evaluation for matches: a match is finally adopted only if there is
+ * no better match at the next window position.
+ */
+local int deflate_slow(s, flush)
+    deflate_state *s;
+    int flush;
+{
+    IPos hash_head;          /* head of hash chain */
+    int bflush;              /* set if current block must be flushed */
+
+    /* Process the input block. */
+    for (;;) {
+        /* Make sure that we always have enough lookahead, except
+         * at the end of the input file. We need MAX_MATCH bytes
+         * for the next match, plus MIN_MATCH bytes to insert the
+         * string following the next match.
+         */
+        if (s->lookahead < MIN_LOOKAHEAD) {
+            fill_window(s);
+            if (s->lookahead < MIN_LOOKAHEAD && flush == Z_NO_FLUSH) return 1;
+
+            if (s->lookahead == 0) break; /* flush the current block */
+        }
+
+        /* Insert the string window[strstart .. strstart+2] in the
+         * dictionary, and set hash_head to the head of the hash chain:
+         */
+        INSERT_STRING(s, s->strstart, hash_head);
+
+        /* Find the longest match, discarding those <= prev_length.
+         */
+        s->prev_length = s->match_length, s->prev_match = s->match_start;
+        s->match_length = MIN_MATCH-1;
+
+        if (hash_head != NIL && s->prev_length < s->max_lazy_match &&
+            s->strstart - hash_head <= MAX_DIST(s)) {
+            /* To simplify the code, we prevent matches with the string
+             * of window index 0 (in particular we have to avoid a match
+             * of the string with itself at the start of the input file).
+             */
+            if (s->strategy != Z_HUFFMAN_ONLY) {
+                s->match_length = longest_match (s, hash_head);
+            }
+            /* longest_match() sets match_start */
+            if (s->match_length > s->lookahead) s->match_length = s->lookahead;
+
+            if (s->match_length <= 5 && (s->strategy == Z_FILTERED ||
+                 (s->match_length == MIN_MATCH &&
+                  s->strstart - s->match_start > TOO_FAR))) {
+
+                /* If prev_match is also MIN_MATCH, match_start is garbage
+                 * but we will ignore the current match anyway.
+                 */
+                s->match_length = MIN_MATCH-1;
+            }
+        }
+        /* If there was a match at the previous step and the current
+         * match is not better, output the previous match:
+         */
+        if (s->prev_length >= MIN_MATCH && s->match_length <= s->prev_length) {
+
+            check_match(s, s->strstart-1, s->prev_match, s->prev_length);
+
+            bflush = ct_tally(s, s->strstart -1 - s->prev_match,
+                              s->prev_length - MIN_MATCH);
+
+            /* Insert in hash table all strings up to the end of the match.
+             * strstart-1 and strstart are already inserted.
+             */
+            s->lookahead -= s->prev_length-1;
+            s->prev_length -= 2;
+            do {
+                s->strstart++;
+                INSERT_STRING(s, s->strstart, hash_head);
+                /* strstart never exceeds WSIZE-MAX_MATCH, so there are
+                 * always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH
+                 * these bytes are garbage, but it does not matter since the
+                 * next lookahead bytes will always be emitted as literals.
+                 */
+            } while (--s->prev_length != 0);
+            s->match_available = 0;
+            s->match_length = MIN_MATCH-1;
+            s->strstart++;
+
+            if (bflush) FLUSH_BLOCK(s, 0);
+
+        } else if (s->match_available) {
+            /* If there was no match at the previous position, output a
+             * single literal. If there was a match but the current match
+             * is longer, truncate the previous match to a single literal.
+             */
+            Tracevv((stderr,"%c", s->window[s->strstart-1]));
+            if (ct_tally (s, 0, s->window[s->strstart-1])) {
+                FLUSH_BLOCK_ONLY(s, 0);
+            }
+            s->strstart++;
+            s->lookahead--;
+            if (s->strm->avail_out == 0) return 1;
+        } else {
+            /* There is no previous match to compare with, wait for
+             * the next step to decide.
+             */
+            s->match_available = 1;
+            s->strstart++;
+            s->lookahead--;
+        }
+    }
+    if (s->match_available) {
+        ct_tally (s, 0, s->window[s->strstart-1]);
+        s->match_available = 0;
+    }
+    FLUSH_BLOCK(s, flush == Z_FINISH);
+    return 0;
+}