comparison zlib/trees.c @ 10:1040ca591f2e

First entry of Paradise Server 2.9 patch 10 Beta
author darius
date Sat, 06 Dec 1997 04:37:18 +0000
parents
children
comparison
equal deleted inserted replaced
9:331055a97a9d 10:1040ca591f2e
1 /* trees.c -- output deflated data using Huffman coding
2 * Copyright (C) 1995 Jean-loup Gailly
3 * For conditions of distribution and use, see copyright notice in zlib.h
4 */
5
6 /*
7 * ALGORITHM
8 *
9 * The "deflation" process uses several Huffman trees. The more
10 * common source values are represented by shorter bit sequences.
11 *
12 * Each code tree is stored in a compressed form which is itself
13 * a Huffman encoding of the lengths of all the code strings (in
14 * ascending order by source values). The actual code strings are
15 * reconstructed from the lengths in the inflate process, as described
16 * in the deflate specification.
17 *
18 * REFERENCES
19 *
20 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
21 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
22 *
23 * Storer, James A.
24 * Data Compression: Methods and Theory, pp. 49-50.
25 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
26 *
27 * Sedgewick, R.
28 * Algorithms, p290.
29 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
30 */
31
32 /* $Id: trees.c,v 1.1.1.1 1997/12/06 04:37:18 darius Exp $ */
33
34 #include "deflate.h"
35
36 #ifdef DEBUG
37 # include <ctype.h>
38 #endif
39
40 /* ===========================================================================
41 * Constants
42 */
43
44 #define MAX_BL_BITS 7
45 /* Bit length codes must not exceed MAX_BL_BITS bits */
46
47 #define END_BLOCK 256
48 /* end of block literal code */
49
50 #define REP_3_6 16
51 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
52
53 #define REPZ_3_10 17
54 /* repeat a zero length 3-10 times (3 bits of repeat count) */
55
56 #define REPZ_11_138 18
57 /* repeat a zero length 11-138 times (7 bits of repeat count) */
58
59 local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
60 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
61
62 local int extra_dbits[D_CODES] /* extra bits for each distance code */
63 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
64
65 local int extra_blbits[BL_CODES]/* extra bits for each bit length code */
66 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
67
68 local uch bl_order[BL_CODES]
69 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
70 /* The lengths of the bit length codes are sent in order of decreasing
71 * probability, to avoid transmitting the lengths for unused bit length codes.
72 */
73
74 #define Buf_size (8 * 2*sizeof(char))
75 /* Number of bits used within bi_buf. (bi_buf might be implemented on
76 * more than 16 bits on some systems.)
77 */
78
79 /* ===========================================================================
80 * Local data. These are initialized only once.
81 * To do: initialize at compile time to be completely reentrant. ???
82 */
83
84 local ct_data static_ltree[L_CODES+2];
85 /* The static literal tree. Since the bit lengths are imposed, there is no
86 * need for the L_CODES extra codes used during heap construction. However
87 * The codes 286 and 287 are needed to build a canonical tree (see ct_init
88 * below).
89 */
90
91 local ct_data static_dtree[D_CODES];
92 /* The static distance tree. (Actually a trivial tree since all codes use
93 * 5 bits.)
94 */
95
96 local uch dist_code[512];
97 /* distance codes. The first 256 values correspond to the distances
98 * 3 .. 258, the last 256 values correspond to the top 8 bits of
99 * the 15 bit distances.
100 */
101
102 local uch length_code[MAX_MATCH-MIN_MATCH+1];
103 /* length code for each normalized match length (0 == MIN_MATCH) */
104
105 local int base_length[LENGTH_CODES];
106 /* First normalized length for each code (0 = MIN_MATCH) */
107
108 local int base_dist[D_CODES];
109 /* First normalized distance for each code (0 = distance of 1) */
110
111 struct static_tree_desc_s {
112 ct_data *static_tree; /* static tree or NULL */
113 intf *extra_bits; /* extra bits for each code or NULL */
114 int extra_base; /* base index for extra_bits */
115 int elems; /* max number of elements in the tree */
116 int max_length; /* max bit length for the codes */
117 };
118
119 local static_tree_desc static_l_desc =
120 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
121
122 local static_tree_desc static_d_desc =
123 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
124
125 local static_tree_desc static_bl_desc =
126 {(ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
127
128 /* ===========================================================================
129 * Local (static) routines in this file.
130 */
131
132 local void ct_static_init OF((void));
133 local void init_block OF((deflate_state *s));
134 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
135 local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
136 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
137 local void build_tree OF((deflate_state *s, tree_desc *desc));
138 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
139 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
140 local int build_bl_tree OF((deflate_state *s));
141 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
142 int blcodes));
143 local void compress_block OF((deflate_state *s, ct_data *ltree,
144 ct_data *dtree));
145 local void set_data_type OF((deflate_state *s));
146 local unsigned bi_reverse OF((unsigned value, int length));
147 local void bi_windup OF((deflate_state *s));
148 local void bi_flush OF((deflate_state *s));
149 local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
150 int header));
151
152 #ifndef DEBUG
153 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
154 /* Send a code of the given tree. c and tree must not have side effects */
155
156 #else /* DEBUG */
157 # define send_code(s, c, tree) \
158 { if (verbose>1) fprintf(stderr,"\ncd %3d ",(c)); \
159 send_bits(s, tree[c].Code, tree[c].Len); }
160 #endif
161
162 #define d_code(dist) \
163 ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)])
164 /* Mapping from a distance to a distance code. dist is the distance - 1 and
165 * must not have side effects. dist_code[256] and dist_code[257] are never
166 * used.
167 */
168
169 /* ===========================================================================
170 * Output a short LSB first on the stream.
171 * IN assertion: there is enough room in pendingBuf.
172 */
173 #define put_short(s, w) { \
174 put_byte(s, (uch)((w) & 0xff)); \
175 put_byte(s, (uch)((ush)(w) >> 8)); \
176 }
177
178 /* ===========================================================================
179 * Send a value on a given number of bits.
180 * IN assertion: length <= 16 and value fits in length bits.
181 */
182 #ifdef DEBUG
183 local void send_bits OF((deflate_state *s, int value, int length));
184
185 local void send_bits(s, value, length)
186 deflate_state *s;
187 int value; /* value to send */
188 int length; /* number of bits */
189 {
190 Tracev((stderr," l %2d v %4x ", length, value));
191 Assert(length > 0 && length <= 15, "invalid length");
192 s->bits_sent += (ulg)length;
193
194 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
195 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
196 * unused bits in value.
197 */
198 if (s->bi_valid > (int)Buf_size - length) {
199 s->bi_buf |= (value << s->bi_valid);
200 put_short(s, s->bi_buf);
201 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
202 s->bi_valid += length - Buf_size;
203 } else {
204 s->bi_buf |= value << s->bi_valid;
205 s->bi_valid += length;
206 }
207 }
208 #else /* !DEBUG */
209
210 #define send_bits(s, value, length) \
211 { int len = length;\
212 if (s->bi_valid > (int)Buf_size - len) {\
213 int val = value;\
214 s->bi_buf |= (val << s->bi_valid);\
215 put_short(s, s->bi_buf);\
216 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
217 s->bi_valid += len - Buf_size;\
218 } else {\
219 s->bi_buf |= (value) << s->bi_valid;\
220 s->bi_valid += len;\
221 }\
222 }
223 #endif /* DEBUG */
224
225
226 #define MAX(a,b) (a >= b ? a : b)
227 /* the arguments must not have side effects */
228
229 /* ===========================================================================
230 * Initialize the various 'constant' tables.
231 * To do: do this at compile time.
232 */
233 local void ct_static_init()
234 {
235 int n; /* iterates over tree elements */
236 int bits; /* bit counter */
237 int length; /* length value */
238 int code; /* code value */
239 int dist; /* distance index */
240 ush bl_count[MAX_BITS+1];
241 /* number of codes at each bit length for an optimal tree */
242
243 /* Initialize the mapping length (0..255) -> length code (0..28) */
244 length = 0;
245 for (code = 0; code < LENGTH_CODES-1; code++) {
246 base_length[code] = length;
247 for (n = 0; n < (1<<extra_lbits[code]); n++) {
248 length_code[length++] = (uch)code;
249 }
250 }
251 Assert (length == 256, "ct_static_init: length != 256");
252 /* Note that the length 255 (match length 258) can be represented
253 * in two different ways: code 284 + 5 bits or code 285, so we
254 * overwrite length_code[255] to use the best encoding:
255 */
256 length_code[length-1] = (uch)code;
257
258 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
259 dist = 0;
260 for (code = 0 ; code < 16; code++) {
261 base_dist[code] = dist;
262 for (n = 0; n < (1<<extra_dbits[code]); n++) {
263 dist_code[dist++] = (uch)code;
264 }
265 }
266 Assert (dist == 256, "ct_static_init: dist != 256");
267 dist >>= 7; /* from now on, all distances are divided by 128 */
268 for ( ; code < D_CODES; code++) {
269 base_dist[code] = dist << 7;
270 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
271 dist_code[256 + dist++] = (uch)code;
272 }
273 }
274 Assert (dist == 256, "ct_static_init: 256+dist != 512");
275
276 /* Construct the codes of the static literal tree */
277 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
278 n = 0;
279 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
280 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
281 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
282 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
283 /* Codes 286 and 287 do not exist, but we must include them in the
284 * tree construction to get a canonical Huffman tree (longest code
285 * all ones)
286 */
287 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
288
289 /* The static distance tree is trivial: */
290 for (n = 0; n < D_CODES; n++) {
291 static_dtree[n].Len = 5;
292 static_dtree[n].Code = bi_reverse(n, 5);
293 }
294 }
295
296 /* ===========================================================================
297 * Initialize the tree data structures for a new zlib stream.
298 */
299 void ct_init(s)
300 deflate_state *s;
301 {
302 if (static_dtree[0].Len == 0) {
303 ct_static_init(); /* To do: at compile time */
304 }
305
306 s->compressed_len = 0L;
307
308 s->l_desc.dyn_tree = s->dyn_ltree;
309 s->l_desc.stat_desc = &static_l_desc;
310
311 s->d_desc.dyn_tree = s->dyn_dtree;
312 s->d_desc.stat_desc = &static_d_desc;
313
314 s->bl_desc.dyn_tree = s->bl_tree;
315 s->bl_desc.stat_desc = &static_bl_desc;
316
317 s->bi_buf = 0;
318 s->bi_valid = 0;
319 s->last_eob_len = 8; /* enough lookahead for inflate */
320 #ifdef DEBUG
321 s->bits_sent = 0L;
322 #endif
323
324 /* Initialize the first block of the first file: */
325 init_block(s);
326 }
327
328 /* ===========================================================================
329 * Initialize a new block.
330 */
331 local void init_block(s)
332 deflate_state *s;
333 {
334 int n; /* iterates over tree elements */
335
336 /* Initialize the trees. */
337 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
338 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
339 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
340
341 s->dyn_ltree[END_BLOCK].Freq = 1;
342 s->opt_len = s->static_len = 0L;
343 s->last_lit = s->matches = 0;
344 }
345
346 #define SMALLEST 1
347 /* Index within the heap array of least frequent node in the Huffman tree */
348
349
350 /* ===========================================================================
351 * Remove the smallest element from the heap and recreate the heap with
352 * one less element. Updates heap and heap_len.
353 */
354 #define pqremove(s, tree, top) \
355 {\
356 top = s->heap[SMALLEST]; \
357 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
358 pqdownheap(s, tree, SMALLEST); \
359 }
360
361 /* ===========================================================================
362 * Compares to subtrees, using the tree depth as tie breaker when
363 * the subtrees have equal frequency. This minimizes the worst case length.
364 */
365 #define smaller(tree, n, m, depth) \
366 (tree[n].Freq < tree[m].Freq || \
367 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
368
369 /* ===========================================================================
370 * Restore the heap property by moving down the tree starting at node k,
371 * exchanging a node with the smallest of its two sons if necessary, stopping
372 * when the heap property is re-established (each father smaller than its
373 * two sons).
374 */
375 local void pqdownheap(s, tree, k)
376 deflate_state *s;
377 ct_data *tree; /* the tree to restore */
378 int k; /* node to move down */
379 {
380 int v = s->heap[k];
381 int j = k << 1; /* left son of k */
382 while (j <= s->heap_len) {
383 /* Set j to the smallest of the two sons: */
384 if (j < s->heap_len &&
385 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
386 j++;
387 }
388 /* Exit if v is smaller than both sons */
389 if (smaller(tree, v, s->heap[j], s->depth)) break;
390
391 /* Exchange v with the smallest son */
392 s->heap[k] = s->heap[j]; k = j;
393
394 /* And continue down the tree, setting j to the left son of k */
395 j <<= 1;
396 }
397 s->heap[k] = v;
398 }
399
400 /* ===========================================================================
401 * Compute the optimal bit lengths for a tree and update the total bit length
402 * for the current block.
403 * IN assertion: the fields freq and dad are set, heap[heap_max] and
404 * above are the tree nodes sorted by increasing frequency.
405 * OUT assertions: the field len is set to the optimal bit length, the
406 * array bl_count contains the frequencies for each bit length.
407 * The length opt_len is updated; static_len is also updated if stree is
408 * not null.
409 */
410 local void gen_bitlen(s, desc)
411 deflate_state *s;
412 tree_desc *desc; /* the tree descriptor */
413 {
414 ct_data *tree = desc->dyn_tree;
415 int max_code = desc->max_code;
416 ct_data *stree = desc->stat_desc->static_tree;
417 intf *extra = desc->stat_desc->extra_bits;
418 int base = desc->stat_desc->extra_base;
419 int max_length = desc->stat_desc->max_length;
420 int h; /* heap index */
421 int n, m; /* iterate over the tree elements */
422 int bits; /* bit length */
423 int xbits; /* extra bits */
424 ush f; /* frequency */
425 int overflow = 0; /* number of elements with bit length too large */
426
427 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
428
429 /* In a first pass, compute the optimal bit lengths (which may
430 * overflow in the case of the bit length tree).
431 */
432 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
433
434 for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
435 n = s->heap[h];
436 bits = tree[tree[n].Dad].Len + 1;
437 if (bits > max_length) bits = max_length, overflow++;
438 tree[n].Len = (ush)bits;
439 /* We overwrite tree[n].Dad which is no longer needed */
440
441 if (n > max_code) continue; /* not a leaf node */
442
443 s->bl_count[bits]++;
444 xbits = 0;
445 if (n >= base) xbits = extra[n-base];
446 f = tree[n].Freq;
447 s->opt_len += (ulg)f * (bits + xbits);
448 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
449 }
450 if (overflow == 0) return;
451
452 Trace((stderr,"\nbit length overflow\n"));
453 /* This happens for example on obj2 and pic of the Calgary corpus */
454
455 /* Find the first bit length which could increase: */
456 do {
457 bits = max_length-1;
458 while (s->bl_count[bits] == 0) bits--;
459 s->bl_count[bits]--; /* move one leaf down the tree */
460 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
461 s->bl_count[max_length]--;
462 /* The brother of the overflow item also moves one step up,
463 * but this does not affect bl_count[max_length]
464 */
465 overflow -= 2;
466 } while (overflow > 0);
467
468 /* Now recompute all bit lengths, scanning in increasing frequency.
469 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
470 * lengths instead of fixing only the wrong ones. This idea is taken
471 * from 'ar' written by Haruhiko Okumura.)
472 */
473 for (bits = max_length; bits != 0; bits--) {
474 n = s->bl_count[bits];
475 while (n != 0) {
476 m = s->heap[--h];
477 if (m > max_code) continue;
478 if (tree[m].Len != (unsigned) bits) {
479 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
480 s->opt_len += ((long)bits - (long)tree[m].Len)
481 *(long)tree[m].Freq;
482 tree[m].Len = (ush)bits;
483 }
484 n--;
485 }
486 }
487 }
488
489 /* ===========================================================================
490 * Generate the codes for a given tree and bit counts (which need not be
491 * optimal).
492 * IN assertion: the array bl_count contains the bit length statistics for
493 * the given tree and the field len is set for all tree elements.
494 * OUT assertion: the field code is set for all tree elements of non
495 * zero code length.
496 */
497 local void gen_codes (tree, max_code, bl_count)
498 ct_data *tree; /* the tree to decorate */
499 int max_code; /* largest code with non zero frequency */
500 ushf *bl_count; /* number of codes at each bit length */
501 {
502 ush next_code[MAX_BITS+1]; /* next code value for each bit length */
503 ush code = 0; /* running code value */
504 int bits; /* bit index */
505 int n; /* code index */
506
507 /* The distribution counts are first used to generate the code values
508 * without bit reversal.
509 */
510 for (bits = 1; bits <= MAX_BITS; bits++) {
511 next_code[bits] = code = (code + bl_count[bits-1]) << 1;
512 }
513 /* Check that the bit counts in bl_count are consistent. The last code
514 * must be all ones.
515 */
516 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
517 "inconsistent bit counts");
518 Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
519
520 for (n = 0; n <= max_code; n++) {
521 int len = tree[n].Len;
522 if (len == 0) continue;
523 /* Now reverse the bits */
524 tree[n].Code = bi_reverse(next_code[len]++, len);
525
526 Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
527 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
528 }
529 }
530
531 /* ===========================================================================
532 * Construct one Huffman tree and assigns the code bit strings and lengths.
533 * Update the total bit length for the current block.
534 * IN assertion: the field freq is set for all tree elements.
535 * OUT assertions: the fields len and code are set to the optimal bit length
536 * and corresponding code. The length opt_len is updated; static_len is
537 * also updated if stree is not null. The field max_code is set.
538 */
539 local void build_tree(s, desc)
540 deflate_state *s;
541 tree_desc *desc; /* the tree descriptor */
542 {
543 ct_data *tree = desc->dyn_tree;
544 ct_data *stree = desc->stat_desc->static_tree;
545 int elems = desc->stat_desc->elems;
546 int n, m; /* iterate over heap elements */
547 int max_code = -1; /* largest code with non zero frequency */
548 int node; /* new node being created */
549
550 /* Construct the initial heap, with least frequent element in
551 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
552 * heap[0] is not used.
553 */
554 s->heap_len = 0, s->heap_max = HEAP_SIZE;
555
556 for (n = 0; n < elems; n++) {
557 if (tree[n].Freq != 0) {
558 s->heap[++(s->heap_len)] = max_code = n;
559 s->depth[n] = 0;
560 } else {
561 tree[n].Len = 0;
562 }
563 }
564
565 /* The pkzip format requires that at least one distance code exists,
566 * and that at least one bit should be sent even if there is only one
567 * possible code. So to avoid special checks later on we force at least
568 * two codes of non zero frequency.
569 */
570 while (s->heap_len < 2) {
571 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
572 tree[node].Freq = 1;
573 s->depth[node] = 0;
574 s->opt_len--; if (stree) s->static_len -= stree[node].Len;
575 /* node is 0 or 1 so it does not have extra bits */
576 }
577 desc->max_code = max_code;
578
579 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
580 * establish sub-heaps of increasing lengths:
581 */
582 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
583
584 /* Construct the Huffman tree by repeatedly combining the least two
585 * frequent nodes.
586 */
587 node = elems; /* next internal node of the tree */
588 do {
589 pqremove(s, tree, n); /* n = node of least frequency */
590 m = s->heap[SMALLEST]; /* m = node of next least frequency */
591
592 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
593 s->heap[--(s->heap_max)] = m;
594
595 /* Create a new node father of n and m */
596 tree[node].Freq = tree[n].Freq + tree[m].Freq;
597 s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
598 tree[n].Dad = tree[m].Dad = (ush)node;
599 #ifdef DUMP_BL_TREE
600 if (tree == s->bl_tree) {
601 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
602 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
603 }
604 #endif
605 /* and insert the new node in the heap */
606 s->heap[SMALLEST] = node++;
607 pqdownheap(s, tree, SMALLEST);
608
609 } while (s->heap_len >= 2);
610
611 s->heap[--(s->heap_max)] = s->heap[SMALLEST];
612
613 /* At this point, the fields freq and dad are set. We can now
614 * generate the bit lengths.
615 */
616 gen_bitlen(s, (tree_desc *)desc);
617
618 /* The field len is now set, we can generate the bit codes */
619 gen_codes ((ct_data *)tree, max_code, s->bl_count);
620 }
621
622 /* ===========================================================================
623 * Scan a literal or distance tree to determine the frequencies of the codes
624 * in the bit length tree.
625 */
626 local void scan_tree (s, tree, max_code)
627 deflate_state *s;
628 ct_data *tree; /* the tree to be scanned */
629 int max_code; /* and its largest code of non zero frequency */
630 {
631 int n; /* iterates over all tree elements */
632 int prevlen = -1; /* last emitted length */
633 int curlen; /* length of current code */
634 int nextlen = tree[0].Len; /* length of next code */
635 int count = 0; /* repeat count of the current code */
636 int max_count = 7; /* max repeat count */
637 int min_count = 4; /* min repeat count */
638
639 if (nextlen == 0) max_count = 138, min_count = 3;
640 tree[max_code+1].Len = (ush)0xffff; /* guard */
641
642 for (n = 0; n <= max_code; n++) {
643 curlen = nextlen; nextlen = tree[n+1].Len;
644 if (++count < max_count && curlen == nextlen) {
645 continue;
646 } else if (count < min_count) {
647 s->bl_tree[curlen].Freq += count;
648 } else if (curlen != 0) {
649 if (curlen != prevlen) s->bl_tree[curlen].Freq++;
650 s->bl_tree[REP_3_6].Freq++;
651 } else if (count <= 10) {
652 s->bl_tree[REPZ_3_10].Freq++;
653 } else {
654 s->bl_tree[REPZ_11_138].Freq++;
655 }
656 count = 0; prevlen = curlen;
657 if (nextlen == 0) {
658 max_count = 138, min_count = 3;
659 } else if (curlen == nextlen) {
660 max_count = 6, min_count = 3;
661 } else {
662 max_count = 7, min_count = 4;
663 }
664 }
665 }
666
667 /* ===========================================================================
668 * Send a literal or distance tree in compressed form, using the codes in
669 * bl_tree.
670 */
671 local void send_tree (s, tree, max_code)
672 deflate_state *s;
673 ct_data *tree; /* the tree to be scanned */
674 int max_code; /* and its largest code of non zero frequency */
675 {
676 int n; /* iterates over all tree elements */
677 int prevlen = -1; /* last emitted length */
678 int curlen; /* length of current code */
679 int nextlen = tree[0].Len; /* length of next code */
680 int count = 0; /* repeat count of the current code */
681 int max_count = 7; /* max repeat count */
682 int min_count = 4; /* min repeat count */
683
684 /* tree[max_code+1].Len = -1; */ /* guard already set */
685 if (nextlen == 0) max_count = 138, min_count = 3;
686
687 for (n = 0; n <= max_code; n++) {
688 curlen = nextlen; nextlen = tree[n+1].Len;
689 if (++count < max_count && curlen == nextlen) {
690 continue;
691 } else if (count < min_count) {
692 do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
693
694 } else if (curlen != 0) {
695 if (curlen != prevlen) {
696 send_code(s, curlen, s->bl_tree); count--;
697 }
698 Assert(count >= 3 && count <= 6, " 3_6?");
699 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
700
701 } else if (count <= 10) {
702 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
703
704 } else {
705 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
706 }
707 count = 0; prevlen = curlen;
708 if (nextlen == 0) {
709 max_count = 138, min_count = 3;
710 } else if (curlen == nextlen) {
711 max_count = 6, min_count = 3;
712 } else {
713 max_count = 7, min_count = 4;
714 }
715 }
716 }
717
718 /* ===========================================================================
719 * Construct the Huffman tree for the bit lengths and return the index in
720 * bl_order of the last bit length code to send.
721 */
722 local int build_bl_tree(s)
723 deflate_state *s;
724 {
725 int max_blindex; /* index of last bit length code of non zero freq */
726
727 /* Determine the bit length frequencies for literal and distance trees */
728 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
729 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
730
731 /* Build the bit length tree: */
732 build_tree(s, (tree_desc *)(&(s->bl_desc)));
733 /* opt_len now includes the length of the tree representations, except
734 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
735 */
736
737 /* Determine the number of bit length codes to send. The pkzip format
738 * requires that at least 4 bit length codes be sent. (appnote.txt says
739 * 3 but the actual value used is 4.)
740 */
741 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
742 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
743 }
744 /* Update opt_len to include the bit length tree and counts */
745 s->opt_len += 3*(max_blindex+1) + 5+5+4;
746 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
747 s->opt_len, s->static_len));
748
749 return max_blindex;
750 }
751
752 /* ===========================================================================
753 * Send the header for a block using dynamic Huffman trees: the counts, the
754 * lengths of the bit length codes, the literal tree and the distance tree.
755 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
756 */
757 local void send_all_trees(s, lcodes, dcodes, blcodes)
758 deflate_state *s;
759 int lcodes, dcodes, blcodes; /* number of codes for each tree */
760 {
761 int rank; /* index in bl_order */
762
763 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
764 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
765 "too many codes");
766 Tracev((stderr, "\nbl counts: "));
767 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
768 send_bits(s, dcodes-1, 5);
769 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
770 for (rank = 0; rank < blcodes; rank++) {
771 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
772 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
773 }
774 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
775
776 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
777 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
778
779 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
780 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
781 }
782
783 /* ===========================================================================
784 * Send a stored block
785 */
786 void ct_stored_block(s, buf, stored_len, eof)
787 deflate_state *s;
788 charf *buf; /* input block */
789 ulg stored_len; /* length of input block */
790 int eof; /* true if this is the last block for a file */
791 {
792 send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */
793 s->compressed_len = (s->compressed_len + 3 + 7) & ~7L;
794 s->compressed_len += (stored_len + 4) << 3;
795
796 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
797 }
798
799 /* ===========================================================================
800 * Send one empty static block to give enough lookahead for inflate.
801 * This takes 10 bits, of which 7 may remain in the bit buffer.
802 * The current inflate code requires 9 bits of lookahead. If the EOB
803 * code for the previous block was coded on 5 bits or less, inflate
804 * may have only 5+3 bits of lookahead to decode this EOB.
805 * (There are no problems if the previous block is stored or fixed.)
806 */
807 void ct_align(s)
808 deflate_state *s;
809 {
810 send_bits(s, STATIC_TREES<<1, 3);
811 send_code(s, END_BLOCK, static_ltree);
812 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
813 bi_flush(s);
814 /* Of the 10 bits for the empty block, we have already sent
815 * (10 - bi_valid) bits. The lookahead for the EOB of the previous
816 * block was thus its length plus what we have just sent.
817 */
818 if (s->last_eob_len + 10 - s->bi_valid < 9) {
819 send_bits(s, STATIC_TREES<<1, 3);
820 send_code(s, END_BLOCK, static_ltree);
821 s->compressed_len += 10L;
822 bi_flush(s);
823 }
824 s->last_eob_len = 7;
825 }
826
827 /* ===========================================================================
828 * Determine the best encoding for the current block: dynamic trees, static
829 * trees or store, and output the encoded block to the zip file. This function
830 * returns the total compressed length for the file so far.
831 */
832 ulg ct_flush_block(s, buf, stored_len, eof)
833 deflate_state *s;
834 charf *buf; /* input block, or NULL if too old */
835 ulg stored_len; /* length of input block */
836 int eof; /* true if this is the last block for a file */
837 {
838 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
839 int max_blindex; /* index of last bit length code of non zero freq */
840
841 /* Check if the file is ascii or binary */
842 if (s->data_type == UNKNOWN) set_data_type(s);
843
844 /* Construct the literal and distance trees */
845 build_tree(s, (tree_desc *)(&(s->l_desc)));
846 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
847 s->static_len));
848
849 build_tree(s, (tree_desc *)(&(s->d_desc)));
850 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
851 s->static_len));
852 /* At this point, opt_len and static_len are the total bit lengths of
853 * the compressed block data, excluding the tree representations.
854 */
855
856 /* Build the bit length tree for the above two trees, and get the index
857 * in bl_order of the last bit length code to send.
858 */
859 max_blindex = build_bl_tree(s);
860
861 /* Determine the best encoding. Compute first the block length in bytes */
862 opt_lenb = (s->opt_len+3+7)>>3;
863 static_lenb = (s->static_len+3+7)>>3;
864
865 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
866 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
867 s->last_lit));
868
869 if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
870
871 /* If compression failed and this is the first and last block,
872 * and if the .zip file can be seeked (to rewrite the local header),
873 * the whole file is transformed into a stored file:
874 */
875 #ifdef STORED_FILE_OK
876 # ifdef FORCE_STORED_FILE
877 if (eof && compressed_len == 0L) { /* force stored file */
878 # else
879 if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) {
880 # endif
881 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */
882 if (buf == (charf*)0) error ("block vanished");
883
884 copy_block(buf, (unsigned)stored_len, 0); /* without header */
885 s->compressed_len = stored_len << 3;
886 s->method = STORED;
887 } else
888 #endif /* STORED_FILE_OK */
889
890 #ifdef FORCE_STORED
891 if (buf != (char*)0) { /* force stored block */
892 #else
893 if (stored_len+4 <= opt_lenb && buf != (char*)0) {
894 /* 4: two words for the lengths */
895 #endif
896 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
897 * Otherwise we can't have processed more than WSIZE input bytes since
898 * the last block flush, because compression would have been
899 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
900 * transform a block into a stored block.
901 */
902 ct_stored_block(s, buf, stored_len, eof);
903
904 #ifdef FORCE_STATIC
905 } else if (static_lenb >= 0) { /* force static trees */
906 #else
907 } else if (static_lenb == opt_lenb) {
908 #endif
909 send_bits(s, (STATIC_TREES<<1)+eof, 3);
910 compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
911 s->compressed_len += 3 + s->static_len;
912 } else {
913 send_bits(s, (DYN_TREES<<1)+eof, 3);
914 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
915 max_blindex+1);
916 compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
917 s->compressed_len += 3 + s->opt_len;
918 }
919 Assert (s->compressed_len == s->bits_sent, "bad compressed size");
920 init_block(s);
921
922 if (eof) {
923 bi_windup(s);
924 s->compressed_len += 7; /* align on byte boundary */
925 }
926 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
927 s->compressed_len-7*eof));
928
929 return s->compressed_len >> 3;
930 }
931
932 /* ===========================================================================
933 * Save the match info and tally the frequency counts. Return true if
934 * the current block must be flushed.
935 */
936 int ct_tally (s, dist, lc)
937 deflate_state *s;
938 int dist; /* distance of matched string */
939 int lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
940 {
941 s->d_buf[s->last_lit] = (ush)dist;
942 s->l_buf[s->last_lit++] = (uch)lc;
943 if (dist == 0) {
944 /* lc is the unmatched char */
945 s->dyn_ltree[lc].Freq++;
946 } else {
947 s->matches++;
948 /* Here, lc is the match length - MIN_MATCH */
949 dist--; /* dist = match distance - 1 */
950 Assert((ush)dist < (ush)MAX_DIST(s) &&
951 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
952 (ush)d_code(dist) < (ush)D_CODES, "ct_tally: bad match");
953
954 s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++;
955 s->dyn_dtree[d_code(dist)].Freq++;
956 }
957
958 /* Try to guess if it is profitable to stop the current block here */
959 if (s->level > 2 && (s->last_lit & 0xfff) == 0) {
960 /* Compute an upper bound for the compressed length */
961 ulg out_length = (ulg)s->last_lit*8L;
962 ulg in_length = (ulg)s->strstart - s->block_start;
963 int dcode;
964 for (dcode = 0; dcode < D_CODES; dcode++) {
965 out_length += (ulg)s->dyn_dtree[dcode].Freq *
966 (5L+extra_dbits[dcode]);
967 }
968 out_length >>= 3;
969 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
970 s->last_lit, in_length, out_length,
971 100L - out_length*100L/in_length));
972 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
973 }
974 return (s->last_lit == s->lit_bufsize-1);
975 /* We avoid equality with lit_bufsize because of wraparound at 64K
976 * on 16 bit machines and because stored blocks are restricted to
977 * 64K-1 bytes.
978 */
979 }
980
981 /* ===========================================================================
982 * Send the block data compressed using the given Huffman trees
983 */
984 local void compress_block(s, ltree, dtree)
985 deflate_state *s;
986 ct_data *ltree; /* literal tree */
987 ct_data *dtree; /* distance tree */
988 {
989 unsigned dist; /* distance of matched string */
990 int lc; /* match length or unmatched char (if dist == 0) */
991 unsigned lx = 0; /* running index in l_buf */
992 unsigned code; /* the code to send */
993 int extra; /* number of extra bits to send */
994
995 if (s->last_lit != 0) do {
996 dist = s->d_buf[lx];
997 lc = s->l_buf[lx++];
998 if (dist == 0) {
999 send_code(s, lc, ltree); /* send a literal byte */
1000 Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1001 } else {
1002 /* Here, lc is the match length - MIN_MATCH */
1003 code = length_code[lc];
1004 send_code(s, code+LITERALS+1, ltree); /* send the length code */
1005 extra = extra_lbits[code];
1006 if (extra != 0) {
1007 lc -= base_length[code];
1008 send_bits(s, lc, extra); /* send the extra length bits */
1009 }
1010 dist--; /* dist is now the match distance - 1 */
1011 code = d_code(dist);
1012 Assert (code < D_CODES, "bad d_code");
1013
1014 send_code(s, code, dtree); /* send the distance code */
1015 extra = extra_dbits[code];
1016 if (extra != 0) {
1017 dist -= base_dist[code];
1018 send_bits(s, dist, extra); /* send the extra distance bits */
1019 }
1020 } /* literal or match pair ? */
1021
1022 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1023 Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
1024
1025 } while (lx < s->last_lit);
1026
1027 send_code(s, END_BLOCK, ltree);
1028 s->last_eob_len = ltree[END_BLOCK].Len;
1029 }
1030
1031 /* ===========================================================================
1032 * Set the data type to ASCII or BINARY, using a crude approximation:
1033 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
1034 * IN assertion: the fields freq of dyn_ltree are set and the total of all
1035 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
1036 */
1037 local void set_data_type(s)
1038 deflate_state *s;
1039 {
1040 int n = 0;
1041 unsigned ascii_freq = 0;
1042 unsigned bin_freq = 0;
1043 while (n < 7) bin_freq += s->dyn_ltree[n++].Freq;
1044 while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq;
1045 while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
1046 s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? BINARY : ASCII);
1047 }
1048
1049 /* ===========================================================================
1050 * Reverse the first len bits of a code, using straightforward code (a faster
1051 * method would use a table)
1052 * IN assertion: 1 <= len <= 15
1053 */
1054 local unsigned bi_reverse(code, len)
1055 unsigned code; /* the value to invert */
1056 int len; /* its bit length */
1057 {
1058 register unsigned res = 0;
1059 do {
1060 res |= code & 1;
1061 code >>= 1, res <<= 1;
1062 } while (--len > 0);
1063 return res >> 1;
1064 }
1065
1066 /* ===========================================================================
1067 * Flush the bit buffer, keeping at most 7 bits in it.
1068 */
1069 local void bi_flush(s)
1070 deflate_state *s;
1071 {
1072 if (s->bi_valid == 16) {
1073 put_short(s, s->bi_buf);
1074 s->bi_buf = 0;
1075 s->bi_valid = 0;
1076 } else if (s->bi_valid >= 8) {
1077 put_byte(s, (Byte)s->bi_buf);
1078 s->bi_buf >>= 8;
1079 s->bi_valid -= 8;
1080 }
1081 }
1082
1083 /* ===========================================================================
1084 * Flush the bit buffer and align the output on a byte boundary
1085 */
1086 local void bi_windup(s)
1087 deflate_state *s;
1088 {
1089 if (s->bi_valid > 8) {
1090 put_short(s, s->bi_buf);
1091 } else if (s->bi_valid > 0) {
1092 put_byte(s, (Byte)s->bi_buf);
1093 }
1094 s->bi_buf = 0;
1095 s->bi_valid = 0;
1096 #ifdef DEBUG
1097 s->bits_sent = (s->bits_sent+7) & ~7;
1098 #endif
1099 }
1100
1101 /* ===========================================================================
1102 * Copy a stored block, storing first the length and its
1103 * one's complement if requested.
1104 */
1105 local void copy_block(s, buf, len, header)
1106 deflate_state *s;
1107 charf *buf; /* the input data */
1108 unsigned len; /* its length */
1109 int header; /* true if block header must be written */
1110 {
1111 bi_windup(s); /* align on byte boundary */
1112 s->last_eob_len = 8; /* enough lookahead for inflate */
1113
1114 if (header) {
1115 put_short(s, (ush)len);
1116 put_short(s, (ush)~len);
1117 #ifdef DEBUG
1118 s->bits_sent += 2*16;
1119 #endif
1120 }
1121 #ifdef DEBUG
1122 s->bits_sent += (ulg)len<<3;
1123 #endif
1124 while (len--) {
1125 put_byte(s, *buf++);
1126 }
1127 }