Mercurial > ~darius > hgwebdir.cgi > paradise_server
comparison zlib/trees.c @ 10:1040ca591f2e
First entry of Paradise Server 2.9 patch 10 Beta
author | darius |
---|---|
date | Sat, 06 Dec 1997 04:37:18 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:331055a97a9d | 10:1040ca591f2e |
---|---|
1 /* trees.c -- output deflated data using Huffman coding | |
2 * Copyright (C) 1995 Jean-loup Gailly | |
3 * For conditions of distribution and use, see copyright notice in zlib.h | |
4 */ | |
5 | |
6 /* | |
7 * ALGORITHM | |
8 * | |
9 * The "deflation" process uses several Huffman trees. The more | |
10 * common source values are represented by shorter bit sequences. | |
11 * | |
12 * Each code tree is stored in a compressed form which is itself | |
13 * a Huffman encoding of the lengths of all the code strings (in | |
14 * ascending order by source values). The actual code strings are | |
15 * reconstructed from the lengths in the inflate process, as described | |
16 * in the deflate specification. | |
17 * | |
18 * REFERENCES | |
19 * | |
20 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". | |
21 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc | |
22 * | |
23 * Storer, James A. | |
24 * Data Compression: Methods and Theory, pp. 49-50. | |
25 * Computer Science Press, 1988. ISBN 0-7167-8156-5. | |
26 * | |
27 * Sedgewick, R. | |
28 * Algorithms, p290. | |
29 * Addison-Wesley, 1983. ISBN 0-201-06672-6. | |
30 */ | |
31 | |
32 /* $Id: trees.c,v 1.1.1.1 1997/12/06 04:37:18 darius Exp $ */ | |
33 | |
34 #include "deflate.h" | |
35 | |
36 #ifdef DEBUG | |
37 # include <ctype.h> | |
38 #endif | |
39 | |
40 /* =========================================================================== | |
41 * Constants | |
42 */ | |
43 | |
44 #define MAX_BL_BITS 7 | |
45 /* Bit length codes must not exceed MAX_BL_BITS bits */ | |
46 | |
47 #define END_BLOCK 256 | |
48 /* end of block literal code */ | |
49 | |
50 #define REP_3_6 16 | |
51 /* repeat previous bit length 3-6 times (2 bits of repeat count) */ | |
52 | |
53 #define REPZ_3_10 17 | |
54 /* repeat a zero length 3-10 times (3 bits of repeat count) */ | |
55 | |
56 #define REPZ_11_138 18 | |
57 /* repeat a zero length 11-138 times (7 bits of repeat count) */ | |
58 | |
59 local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ | |
60 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; | |
61 | |
62 local int extra_dbits[D_CODES] /* extra bits for each distance code */ | |
63 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; | |
64 | |
65 local int extra_blbits[BL_CODES]/* extra bits for each bit length code */ | |
66 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; | |
67 | |
68 local uch bl_order[BL_CODES] | |
69 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; | |
70 /* The lengths of the bit length codes are sent in order of decreasing | |
71 * probability, to avoid transmitting the lengths for unused bit length codes. | |
72 */ | |
73 | |
74 #define Buf_size (8 * 2*sizeof(char)) | |
75 /* Number of bits used within bi_buf. (bi_buf might be implemented on | |
76 * more than 16 bits on some systems.) | |
77 */ | |
78 | |
79 /* =========================================================================== | |
80 * Local data. These are initialized only once. | |
81 * To do: initialize at compile time to be completely reentrant. ??? | |
82 */ | |
83 | |
84 local ct_data static_ltree[L_CODES+2]; | |
85 /* The static literal tree. Since the bit lengths are imposed, there is no | |
86 * need for the L_CODES extra codes used during heap construction. However | |
87 * The codes 286 and 287 are needed to build a canonical tree (see ct_init | |
88 * below). | |
89 */ | |
90 | |
91 local ct_data static_dtree[D_CODES]; | |
92 /* The static distance tree. (Actually a trivial tree since all codes use | |
93 * 5 bits.) | |
94 */ | |
95 | |
96 local uch dist_code[512]; | |
97 /* distance codes. The first 256 values correspond to the distances | |
98 * 3 .. 258, the last 256 values correspond to the top 8 bits of | |
99 * the 15 bit distances. | |
100 */ | |
101 | |
102 local uch length_code[MAX_MATCH-MIN_MATCH+1]; | |
103 /* length code for each normalized match length (0 == MIN_MATCH) */ | |
104 | |
105 local int base_length[LENGTH_CODES]; | |
106 /* First normalized length for each code (0 = MIN_MATCH) */ | |
107 | |
108 local int base_dist[D_CODES]; | |
109 /* First normalized distance for each code (0 = distance of 1) */ | |
110 | |
111 struct static_tree_desc_s { | |
112 ct_data *static_tree; /* static tree or NULL */ | |
113 intf *extra_bits; /* extra bits for each code or NULL */ | |
114 int extra_base; /* base index for extra_bits */ | |
115 int elems; /* max number of elements in the tree */ | |
116 int max_length; /* max bit length for the codes */ | |
117 }; | |
118 | |
119 local static_tree_desc static_l_desc = | |
120 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; | |
121 | |
122 local static_tree_desc static_d_desc = | |
123 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; | |
124 | |
125 local static_tree_desc static_bl_desc = | |
126 {(ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; | |
127 | |
128 /* =========================================================================== | |
129 * Local (static) routines in this file. | |
130 */ | |
131 | |
132 local void ct_static_init OF((void)); | |
133 local void init_block OF((deflate_state *s)); | |
134 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k)); | |
135 local void gen_bitlen OF((deflate_state *s, tree_desc *desc)); | |
136 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count)); | |
137 local void build_tree OF((deflate_state *s, tree_desc *desc)); | |
138 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code)); | |
139 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code)); | |
140 local int build_bl_tree OF((deflate_state *s)); | |
141 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes, | |
142 int blcodes)); | |
143 local void compress_block OF((deflate_state *s, ct_data *ltree, | |
144 ct_data *dtree)); | |
145 local void set_data_type OF((deflate_state *s)); | |
146 local unsigned bi_reverse OF((unsigned value, int length)); | |
147 local void bi_windup OF((deflate_state *s)); | |
148 local void bi_flush OF((deflate_state *s)); | |
149 local void copy_block OF((deflate_state *s, charf *buf, unsigned len, | |
150 int header)); | |
151 | |
152 #ifndef DEBUG | |
153 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) | |
154 /* Send a code of the given tree. c and tree must not have side effects */ | |
155 | |
156 #else /* DEBUG */ | |
157 # define send_code(s, c, tree) \ | |
158 { if (verbose>1) fprintf(stderr,"\ncd %3d ",(c)); \ | |
159 send_bits(s, tree[c].Code, tree[c].Len); } | |
160 #endif | |
161 | |
162 #define d_code(dist) \ | |
163 ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)]) | |
164 /* Mapping from a distance to a distance code. dist is the distance - 1 and | |
165 * must not have side effects. dist_code[256] and dist_code[257] are never | |
166 * used. | |
167 */ | |
168 | |
169 /* =========================================================================== | |
170 * Output a short LSB first on the stream. | |
171 * IN assertion: there is enough room in pendingBuf. | |
172 */ | |
173 #define put_short(s, w) { \ | |
174 put_byte(s, (uch)((w) & 0xff)); \ | |
175 put_byte(s, (uch)((ush)(w) >> 8)); \ | |
176 } | |
177 | |
178 /* =========================================================================== | |
179 * Send a value on a given number of bits. | |
180 * IN assertion: length <= 16 and value fits in length bits. | |
181 */ | |
182 #ifdef DEBUG | |
183 local void send_bits OF((deflate_state *s, int value, int length)); | |
184 | |
185 local void send_bits(s, value, length) | |
186 deflate_state *s; | |
187 int value; /* value to send */ | |
188 int length; /* number of bits */ | |
189 { | |
190 Tracev((stderr," l %2d v %4x ", length, value)); | |
191 Assert(length > 0 && length <= 15, "invalid length"); | |
192 s->bits_sent += (ulg)length; | |
193 | |
194 /* If not enough room in bi_buf, use (valid) bits from bi_buf and | |
195 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) | |
196 * unused bits in value. | |
197 */ | |
198 if (s->bi_valid > (int)Buf_size - length) { | |
199 s->bi_buf |= (value << s->bi_valid); | |
200 put_short(s, s->bi_buf); | |
201 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); | |
202 s->bi_valid += length - Buf_size; | |
203 } else { | |
204 s->bi_buf |= value << s->bi_valid; | |
205 s->bi_valid += length; | |
206 } | |
207 } | |
208 #else /* !DEBUG */ | |
209 | |
210 #define send_bits(s, value, length) \ | |
211 { int len = length;\ | |
212 if (s->bi_valid > (int)Buf_size - len) {\ | |
213 int val = value;\ | |
214 s->bi_buf |= (val << s->bi_valid);\ | |
215 put_short(s, s->bi_buf);\ | |
216 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ | |
217 s->bi_valid += len - Buf_size;\ | |
218 } else {\ | |
219 s->bi_buf |= (value) << s->bi_valid;\ | |
220 s->bi_valid += len;\ | |
221 }\ | |
222 } | |
223 #endif /* DEBUG */ | |
224 | |
225 | |
226 #define MAX(a,b) (a >= b ? a : b) | |
227 /* the arguments must not have side effects */ | |
228 | |
229 /* =========================================================================== | |
230 * Initialize the various 'constant' tables. | |
231 * To do: do this at compile time. | |
232 */ | |
233 local void ct_static_init() | |
234 { | |
235 int n; /* iterates over tree elements */ | |
236 int bits; /* bit counter */ | |
237 int length; /* length value */ | |
238 int code; /* code value */ | |
239 int dist; /* distance index */ | |
240 ush bl_count[MAX_BITS+1]; | |
241 /* number of codes at each bit length for an optimal tree */ | |
242 | |
243 /* Initialize the mapping length (0..255) -> length code (0..28) */ | |
244 length = 0; | |
245 for (code = 0; code < LENGTH_CODES-1; code++) { | |
246 base_length[code] = length; | |
247 for (n = 0; n < (1<<extra_lbits[code]); n++) { | |
248 length_code[length++] = (uch)code; | |
249 } | |
250 } | |
251 Assert (length == 256, "ct_static_init: length != 256"); | |
252 /* Note that the length 255 (match length 258) can be represented | |
253 * in two different ways: code 284 + 5 bits or code 285, so we | |
254 * overwrite length_code[255] to use the best encoding: | |
255 */ | |
256 length_code[length-1] = (uch)code; | |
257 | |
258 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ | |
259 dist = 0; | |
260 for (code = 0 ; code < 16; code++) { | |
261 base_dist[code] = dist; | |
262 for (n = 0; n < (1<<extra_dbits[code]); n++) { | |
263 dist_code[dist++] = (uch)code; | |
264 } | |
265 } | |
266 Assert (dist == 256, "ct_static_init: dist != 256"); | |
267 dist >>= 7; /* from now on, all distances are divided by 128 */ | |
268 for ( ; code < D_CODES; code++) { | |
269 base_dist[code] = dist << 7; | |
270 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { | |
271 dist_code[256 + dist++] = (uch)code; | |
272 } | |
273 } | |
274 Assert (dist == 256, "ct_static_init: 256+dist != 512"); | |
275 | |
276 /* Construct the codes of the static literal tree */ | |
277 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; | |
278 n = 0; | |
279 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; | |
280 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; | |
281 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; | |
282 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; | |
283 /* Codes 286 and 287 do not exist, but we must include them in the | |
284 * tree construction to get a canonical Huffman tree (longest code | |
285 * all ones) | |
286 */ | |
287 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); | |
288 | |
289 /* The static distance tree is trivial: */ | |
290 for (n = 0; n < D_CODES; n++) { | |
291 static_dtree[n].Len = 5; | |
292 static_dtree[n].Code = bi_reverse(n, 5); | |
293 } | |
294 } | |
295 | |
296 /* =========================================================================== | |
297 * Initialize the tree data structures for a new zlib stream. | |
298 */ | |
299 void ct_init(s) | |
300 deflate_state *s; | |
301 { | |
302 if (static_dtree[0].Len == 0) { | |
303 ct_static_init(); /* To do: at compile time */ | |
304 } | |
305 | |
306 s->compressed_len = 0L; | |
307 | |
308 s->l_desc.dyn_tree = s->dyn_ltree; | |
309 s->l_desc.stat_desc = &static_l_desc; | |
310 | |
311 s->d_desc.dyn_tree = s->dyn_dtree; | |
312 s->d_desc.stat_desc = &static_d_desc; | |
313 | |
314 s->bl_desc.dyn_tree = s->bl_tree; | |
315 s->bl_desc.stat_desc = &static_bl_desc; | |
316 | |
317 s->bi_buf = 0; | |
318 s->bi_valid = 0; | |
319 s->last_eob_len = 8; /* enough lookahead for inflate */ | |
320 #ifdef DEBUG | |
321 s->bits_sent = 0L; | |
322 #endif | |
323 | |
324 /* Initialize the first block of the first file: */ | |
325 init_block(s); | |
326 } | |
327 | |
328 /* =========================================================================== | |
329 * Initialize a new block. | |
330 */ | |
331 local void init_block(s) | |
332 deflate_state *s; | |
333 { | |
334 int n; /* iterates over tree elements */ | |
335 | |
336 /* Initialize the trees. */ | |
337 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; | |
338 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; | |
339 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; | |
340 | |
341 s->dyn_ltree[END_BLOCK].Freq = 1; | |
342 s->opt_len = s->static_len = 0L; | |
343 s->last_lit = s->matches = 0; | |
344 } | |
345 | |
346 #define SMALLEST 1 | |
347 /* Index within the heap array of least frequent node in the Huffman tree */ | |
348 | |
349 | |
350 /* =========================================================================== | |
351 * Remove the smallest element from the heap and recreate the heap with | |
352 * one less element. Updates heap and heap_len. | |
353 */ | |
354 #define pqremove(s, tree, top) \ | |
355 {\ | |
356 top = s->heap[SMALLEST]; \ | |
357 s->heap[SMALLEST] = s->heap[s->heap_len--]; \ | |
358 pqdownheap(s, tree, SMALLEST); \ | |
359 } | |
360 | |
361 /* =========================================================================== | |
362 * Compares to subtrees, using the tree depth as tie breaker when | |
363 * the subtrees have equal frequency. This minimizes the worst case length. | |
364 */ | |
365 #define smaller(tree, n, m, depth) \ | |
366 (tree[n].Freq < tree[m].Freq || \ | |
367 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) | |
368 | |
369 /* =========================================================================== | |
370 * Restore the heap property by moving down the tree starting at node k, | |
371 * exchanging a node with the smallest of its two sons if necessary, stopping | |
372 * when the heap property is re-established (each father smaller than its | |
373 * two sons). | |
374 */ | |
375 local void pqdownheap(s, tree, k) | |
376 deflate_state *s; | |
377 ct_data *tree; /* the tree to restore */ | |
378 int k; /* node to move down */ | |
379 { | |
380 int v = s->heap[k]; | |
381 int j = k << 1; /* left son of k */ | |
382 while (j <= s->heap_len) { | |
383 /* Set j to the smallest of the two sons: */ | |
384 if (j < s->heap_len && | |
385 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { | |
386 j++; | |
387 } | |
388 /* Exit if v is smaller than both sons */ | |
389 if (smaller(tree, v, s->heap[j], s->depth)) break; | |
390 | |
391 /* Exchange v with the smallest son */ | |
392 s->heap[k] = s->heap[j]; k = j; | |
393 | |
394 /* And continue down the tree, setting j to the left son of k */ | |
395 j <<= 1; | |
396 } | |
397 s->heap[k] = v; | |
398 } | |
399 | |
400 /* =========================================================================== | |
401 * Compute the optimal bit lengths for a tree and update the total bit length | |
402 * for the current block. | |
403 * IN assertion: the fields freq and dad are set, heap[heap_max] and | |
404 * above are the tree nodes sorted by increasing frequency. | |
405 * OUT assertions: the field len is set to the optimal bit length, the | |
406 * array bl_count contains the frequencies for each bit length. | |
407 * The length opt_len is updated; static_len is also updated if stree is | |
408 * not null. | |
409 */ | |
410 local void gen_bitlen(s, desc) | |
411 deflate_state *s; | |
412 tree_desc *desc; /* the tree descriptor */ | |
413 { | |
414 ct_data *tree = desc->dyn_tree; | |
415 int max_code = desc->max_code; | |
416 ct_data *stree = desc->stat_desc->static_tree; | |
417 intf *extra = desc->stat_desc->extra_bits; | |
418 int base = desc->stat_desc->extra_base; | |
419 int max_length = desc->stat_desc->max_length; | |
420 int h; /* heap index */ | |
421 int n, m; /* iterate over the tree elements */ | |
422 int bits; /* bit length */ | |
423 int xbits; /* extra bits */ | |
424 ush f; /* frequency */ | |
425 int overflow = 0; /* number of elements with bit length too large */ | |
426 | |
427 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; | |
428 | |
429 /* In a first pass, compute the optimal bit lengths (which may | |
430 * overflow in the case of the bit length tree). | |
431 */ | |
432 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ | |
433 | |
434 for (h = s->heap_max+1; h < HEAP_SIZE; h++) { | |
435 n = s->heap[h]; | |
436 bits = tree[tree[n].Dad].Len + 1; | |
437 if (bits > max_length) bits = max_length, overflow++; | |
438 tree[n].Len = (ush)bits; | |
439 /* We overwrite tree[n].Dad which is no longer needed */ | |
440 | |
441 if (n > max_code) continue; /* not a leaf node */ | |
442 | |
443 s->bl_count[bits]++; | |
444 xbits = 0; | |
445 if (n >= base) xbits = extra[n-base]; | |
446 f = tree[n].Freq; | |
447 s->opt_len += (ulg)f * (bits + xbits); | |
448 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); | |
449 } | |
450 if (overflow == 0) return; | |
451 | |
452 Trace((stderr,"\nbit length overflow\n")); | |
453 /* This happens for example on obj2 and pic of the Calgary corpus */ | |
454 | |
455 /* Find the first bit length which could increase: */ | |
456 do { | |
457 bits = max_length-1; | |
458 while (s->bl_count[bits] == 0) bits--; | |
459 s->bl_count[bits]--; /* move one leaf down the tree */ | |
460 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ | |
461 s->bl_count[max_length]--; | |
462 /* The brother of the overflow item also moves one step up, | |
463 * but this does not affect bl_count[max_length] | |
464 */ | |
465 overflow -= 2; | |
466 } while (overflow > 0); | |
467 | |
468 /* Now recompute all bit lengths, scanning in increasing frequency. | |
469 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all | |
470 * lengths instead of fixing only the wrong ones. This idea is taken | |
471 * from 'ar' written by Haruhiko Okumura.) | |
472 */ | |
473 for (bits = max_length; bits != 0; bits--) { | |
474 n = s->bl_count[bits]; | |
475 while (n != 0) { | |
476 m = s->heap[--h]; | |
477 if (m > max_code) continue; | |
478 if (tree[m].Len != (unsigned) bits) { | |
479 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); | |
480 s->opt_len += ((long)bits - (long)tree[m].Len) | |
481 *(long)tree[m].Freq; | |
482 tree[m].Len = (ush)bits; | |
483 } | |
484 n--; | |
485 } | |
486 } | |
487 } | |
488 | |
489 /* =========================================================================== | |
490 * Generate the codes for a given tree and bit counts (which need not be | |
491 * optimal). | |
492 * IN assertion: the array bl_count contains the bit length statistics for | |
493 * the given tree and the field len is set for all tree elements. | |
494 * OUT assertion: the field code is set for all tree elements of non | |
495 * zero code length. | |
496 */ | |
497 local void gen_codes (tree, max_code, bl_count) | |
498 ct_data *tree; /* the tree to decorate */ | |
499 int max_code; /* largest code with non zero frequency */ | |
500 ushf *bl_count; /* number of codes at each bit length */ | |
501 { | |
502 ush next_code[MAX_BITS+1]; /* next code value for each bit length */ | |
503 ush code = 0; /* running code value */ | |
504 int bits; /* bit index */ | |
505 int n; /* code index */ | |
506 | |
507 /* The distribution counts are first used to generate the code values | |
508 * without bit reversal. | |
509 */ | |
510 for (bits = 1; bits <= MAX_BITS; bits++) { | |
511 next_code[bits] = code = (code + bl_count[bits-1]) << 1; | |
512 } | |
513 /* Check that the bit counts in bl_count are consistent. The last code | |
514 * must be all ones. | |
515 */ | |
516 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, | |
517 "inconsistent bit counts"); | |
518 Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); | |
519 | |
520 for (n = 0; n <= max_code; n++) { | |
521 int len = tree[n].Len; | |
522 if (len == 0) continue; | |
523 /* Now reverse the bits */ | |
524 tree[n].Code = bi_reverse(next_code[len]++, len); | |
525 | |
526 Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", | |
527 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); | |
528 } | |
529 } | |
530 | |
531 /* =========================================================================== | |
532 * Construct one Huffman tree and assigns the code bit strings and lengths. | |
533 * Update the total bit length for the current block. | |
534 * IN assertion: the field freq is set for all tree elements. | |
535 * OUT assertions: the fields len and code are set to the optimal bit length | |
536 * and corresponding code. The length opt_len is updated; static_len is | |
537 * also updated if stree is not null. The field max_code is set. | |
538 */ | |
539 local void build_tree(s, desc) | |
540 deflate_state *s; | |
541 tree_desc *desc; /* the tree descriptor */ | |
542 { | |
543 ct_data *tree = desc->dyn_tree; | |
544 ct_data *stree = desc->stat_desc->static_tree; | |
545 int elems = desc->stat_desc->elems; | |
546 int n, m; /* iterate over heap elements */ | |
547 int max_code = -1; /* largest code with non zero frequency */ | |
548 int node; /* new node being created */ | |
549 | |
550 /* Construct the initial heap, with least frequent element in | |
551 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. | |
552 * heap[0] is not used. | |
553 */ | |
554 s->heap_len = 0, s->heap_max = HEAP_SIZE; | |
555 | |
556 for (n = 0; n < elems; n++) { | |
557 if (tree[n].Freq != 0) { | |
558 s->heap[++(s->heap_len)] = max_code = n; | |
559 s->depth[n] = 0; | |
560 } else { | |
561 tree[n].Len = 0; | |
562 } | |
563 } | |
564 | |
565 /* The pkzip format requires that at least one distance code exists, | |
566 * and that at least one bit should be sent even if there is only one | |
567 * possible code. So to avoid special checks later on we force at least | |
568 * two codes of non zero frequency. | |
569 */ | |
570 while (s->heap_len < 2) { | |
571 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); | |
572 tree[node].Freq = 1; | |
573 s->depth[node] = 0; | |
574 s->opt_len--; if (stree) s->static_len -= stree[node].Len; | |
575 /* node is 0 or 1 so it does not have extra bits */ | |
576 } | |
577 desc->max_code = max_code; | |
578 | |
579 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, | |
580 * establish sub-heaps of increasing lengths: | |
581 */ | |
582 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); | |
583 | |
584 /* Construct the Huffman tree by repeatedly combining the least two | |
585 * frequent nodes. | |
586 */ | |
587 node = elems; /* next internal node of the tree */ | |
588 do { | |
589 pqremove(s, tree, n); /* n = node of least frequency */ | |
590 m = s->heap[SMALLEST]; /* m = node of next least frequency */ | |
591 | |
592 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ | |
593 s->heap[--(s->heap_max)] = m; | |
594 | |
595 /* Create a new node father of n and m */ | |
596 tree[node].Freq = tree[n].Freq + tree[m].Freq; | |
597 s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1); | |
598 tree[n].Dad = tree[m].Dad = (ush)node; | |
599 #ifdef DUMP_BL_TREE | |
600 if (tree == s->bl_tree) { | |
601 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", | |
602 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); | |
603 } | |
604 #endif | |
605 /* and insert the new node in the heap */ | |
606 s->heap[SMALLEST] = node++; | |
607 pqdownheap(s, tree, SMALLEST); | |
608 | |
609 } while (s->heap_len >= 2); | |
610 | |
611 s->heap[--(s->heap_max)] = s->heap[SMALLEST]; | |
612 | |
613 /* At this point, the fields freq and dad are set. We can now | |
614 * generate the bit lengths. | |
615 */ | |
616 gen_bitlen(s, (tree_desc *)desc); | |
617 | |
618 /* The field len is now set, we can generate the bit codes */ | |
619 gen_codes ((ct_data *)tree, max_code, s->bl_count); | |
620 } | |
621 | |
622 /* =========================================================================== | |
623 * Scan a literal or distance tree to determine the frequencies of the codes | |
624 * in the bit length tree. | |
625 */ | |
626 local void scan_tree (s, tree, max_code) | |
627 deflate_state *s; | |
628 ct_data *tree; /* the tree to be scanned */ | |
629 int max_code; /* and its largest code of non zero frequency */ | |
630 { | |
631 int n; /* iterates over all tree elements */ | |
632 int prevlen = -1; /* last emitted length */ | |
633 int curlen; /* length of current code */ | |
634 int nextlen = tree[0].Len; /* length of next code */ | |
635 int count = 0; /* repeat count of the current code */ | |
636 int max_count = 7; /* max repeat count */ | |
637 int min_count = 4; /* min repeat count */ | |
638 | |
639 if (nextlen == 0) max_count = 138, min_count = 3; | |
640 tree[max_code+1].Len = (ush)0xffff; /* guard */ | |
641 | |
642 for (n = 0; n <= max_code; n++) { | |
643 curlen = nextlen; nextlen = tree[n+1].Len; | |
644 if (++count < max_count && curlen == nextlen) { | |
645 continue; | |
646 } else if (count < min_count) { | |
647 s->bl_tree[curlen].Freq += count; | |
648 } else if (curlen != 0) { | |
649 if (curlen != prevlen) s->bl_tree[curlen].Freq++; | |
650 s->bl_tree[REP_3_6].Freq++; | |
651 } else if (count <= 10) { | |
652 s->bl_tree[REPZ_3_10].Freq++; | |
653 } else { | |
654 s->bl_tree[REPZ_11_138].Freq++; | |
655 } | |
656 count = 0; prevlen = curlen; | |
657 if (nextlen == 0) { | |
658 max_count = 138, min_count = 3; | |
659 } else if (curlen == nextlen) { | |
660 max_count = 6, min_count = 3; | |
661 } else { | |
662 max_count = 7, min_count = 4; | |
663 } | |
664 } | |
665 } | |
666 | |
667 /* =========================================================================== | |
668 * Send a literal or distance tree in compressed form, using the codes in | |
669 * bl_tree. | |
670 */ | |
671 local void send_tree (s, tree, max_code) | |
672 deflate_state *s; | |
673 ct_data *tree; /* the tree to be scanned */ | |
674 int max_code; /* and its largest code of non zero frequency */ | |
675 { | |
676 int n; /* iterates over all tree elements */ | |
677 int prevlen = -1; /* last emitted length */ | |
678 int curlen; /* length of current code */ | |
679 int nextlen = tree[0].Len; /* length of next code */ | |
680 int count = 0; /* repeat count of the current code */ | |
681 int max_count = 7; /* max repeat count */ | |
682 int min_count = 4; /* min repeat count */ | |
683 | |
684 /* tree[max_code+1].Len = -1; */ /* guard already set */ | |
685 if (nextlen == 0) max_count = 138, min_count = 3; | |
686 | |
687 for (n = 0; n <= max_code; n++) { | |
688 curlen = nextlen; nextlen = tree[n+1].Len; | |
689 if (++count < max_count && curlen == nextlen) { | |
690 continue; | |
691 } else if (count < min_count) { | |
692 do { send_code(s, curlen, s->bl_tree); } while (--count != 0); | |
693 | |
694 } else if (curlen != 0) { | |
695 if (curlen != prevlen) { | |
696 send_code(s, curlen, s->bl_tree); count--; | |
697 } | |
698 Assert(count >= 3 && count <= 6, " 3_6?"); | |
699 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); | |
700 | |
701 } else if (count <= 10) { | |
702 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); | |
703 | |
704 } else { | |
705 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); | |
706 } | |
707 count = 0; prevlen = curlen; | |
708 if (nextlen == 0) { | |
709 max_count = 138, min_count = 3; | |
710 } else if (curlen == nextlen) { | |
711 max_count = 6, min_count = 3; | |
712 } else { | |
713 max_count = 7, min_count = 4; | |
714 } | |
715 } | |
716 } | |
717 | |
718 /* =========================================================================== | |
719 * Construct the Huffman tree for the bit lengths and return the index in | |
720 * bl_order of the last bit length code to send. | |
721 */ | |
722 local int build_bl_tree(s) | |
723 deflate_state *s; | |
724 { | |
725 int max_blindex; /* index of last bit length code of non zero freq */ | |
726 | |
727 /* Determine the bit length frequencies for literal and distance trees */ | |
728 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); | |
729 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); | |
730 | |
731 /* Build the bit length tree: */ | |
732 build_tree(s, (tree_desc *)(&(s->bl_desc))); | |
733 /* opt_len now includes the length of the tree representations, except | |
734 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. | |
735 */ | |
736 | |
737 /* Determine the number of bit length codes to send. The pkzip format | |
738 * requires that at least 4 bit length codes be sent. (appnote.txt says | |
739 * 3 but the actual value used is 4.) | |
740 */ | |
741 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { | |
742 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; | |
743 } | |
744 /* Update opt_len to include the bit length tree and counts */ | |
745 s->opt_len += 3*(max_blindex+1) + 5+5+4; | |
746 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", | |
747 s->opt_len, s->static_len)); | |
748 | |
749 return max_blindex; | |
750 } | |
751 | |
752 /* =========================================================================== | |
753 * Send the header for a block using dynamic Huffman trees: the counts, the | |
754 * lengths of the bit length codes, the literal tree and the distance tree. | |
755 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. | |
756 */ | |
757 local void send_all_trees(s, lcodes, dcodes, blcodes) | |
758 deflate_state *s; | |
759 int lcodes, dcodes, blcodes; /* number of codes for each tree */ | |
760 { | |
761 int rank; /* index in bl_order */ | |
762 | |
763 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); | |
764 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, | |
765 "too many codes"); | |
766 Tracev((stderr, "\nbl counts: ")); | |
767 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ | |
768 send_bits(s, dcodes-1, 5); | |
769 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ | |
770 for (rank = 0; rank < blcodes; rank++) { | |
771 Tracev((stderr, "\nbl code %2d ", bl_order[rank])); | |
772 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); | |
773 } | |
774 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); | |
775 | |
776 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ | |
777 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); | |
778 | |
779 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ | |
780 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); | |
781 } | |
782 | |
783 /* =========================================================================== | |
784 * Send a stored block | |
785 */ | |
786 void ct_stored_block(s, buf, stored_len, eof) | |
787 deflate_state *s; | |
788 charf *buf; /* input block */ | |
789 ulg stored_len; /* length of input block */ | |
790 int eof; /* true if this is the last block for a file */ | |
791 { | |
792 send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */ | |
793 s->compressed_len = (s->compressed_len + 3 + 7) & ~7L; | |
794 s->compressed_len += (stored_len + 4) << 3; | |
795 | |
796 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ | |
797 } | |
798 | |
799 /* =========================================================================== | |
800 * Send one empty static block to give enough lookahead for inflate. | |
801 * This takes 10 bits, of which 7 may remain in the bit buffer. | |
802 * The current inflate code requires 9 bits of lookahead. If the EOB | |
803 * code for the previous block was coded on 5 bits or less, inflate | |
804 * may have only 5+3 bits of lookahead to decode this EOB. | |
805 * (There are no problems if the previous block is stored or fixed.) | |
806 */ | |
807 void ct_align(s) | |
808 deflate_state *s; | |
809 { | |
810 send_bits(s, STATIC_TREES<<1, 3); | |
811 send_code(s, END_BLOCK, static_ltree); | |
812 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ | |
813 bi_flush(s); | |
814 /* Of the 10 bits for the empty block, we have already sent | |
815 * (10 - bi_valid) bits. The lookahead for the EOB of the previous | |
816 * block was thus its length plus what we have just sent. | |
817 */ | |
818 if (s->last_eob_len + 10 - s->bi_valid < 9) { | |
819 send_bits(s, STATIC_TREES<<1, 3); | |
820 send_code(s, END_BLOCK, static_ltree); | |
821 s->compressed_len += 10L; | |
822 bi_flush(s); | |
823 } | |
824 s->last_eob_len = 7; | |
825 } | |
826 | |
827 /* =========================================================================== | |
828 * Determine the best encoding for the current block: dynamic trees, static | |
829 * trees or store, and output the encoded block to the zip file. This function | |
830 * returns the total compressed length for the file so far. | |
831 */ | |
832 ulg ct_flush_block(s, buf, stored_len, eof) | |
833 deflate_state *s; | |
834 charf *buf; /* input block, or NULL if too old */ | |
835 ulg stored_len; /* length of input block */ | |
836 int eof; /* true if this is the last block for a file */ | |
837 { | |
838 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ | |
839 int max_blindex; /* index of last bit length code of non zero freq */ | |
840 | |
841 /* Check if the file is ascii or binary */ | |
842 if (s->data_type == UNKNOWN) set_data_type(s); | |
843 | |
844 /* Construct the literal and distance trees */ | |
845 build_tree(s, (tree_desc *)(&(s->l_desc))); | |
846 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, | |
847 s->static_len)); | |
848 | |
849 build_tree(s, (tree_desc *)(&(s->d_desc))); | |
850 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, | |
851 s->static_len)); | |
852 /* At this point, opt_len and static_len are the total bit lengths of | |
853 * the compressed block data, excluding the tree representations. | |
854 */ | |
855 | |
856 /* Build the bit length tree for the above two trees, and get the index | |
857 * in bl_order of the last bit length code to send. | |
858 */ | |
859 max_blindex = build_bl_tree(s); | |
860 | |
861 /* Determine the best encoding. Compute first the block length in bytes */ | |
862 opt_lenb = (s->opt_len+3+7)>>3; | |
863 static_lenb = (s->static_len+3+7)>>3; | |
864 | |
865 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", | |
866 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, | |
867 s->last_lit)); | |
868 | |
869 if (static_lenb <= opt_lenb) opt_lenb = static_lenb; | |
870 | |
871 /* If compression failed and this is the first and last block, | |
872 * and if the .zip file can be seeked (to rewrite the local header), | |
873 * the whole file is transformed into a stored file: | |
874 */ | |
875 #ifdef STORED_FILE_OK | |
876 # ifdef FORCE_STORED_FILE | |
877 if (eof && compressed_len == 0L) { /* force stored file */ | |
878 # else | |
879 if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) { | |
880 # endif | |
881 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */ | |
882 if (buf == (charf*)0) error ("block vanished"); | |
883 | |
884 copy_block(buf, (unsigned)stored_len, 0); /* without header */ | |
885 s->compressed_len = stored_len << 3; | |
886 s->method = STORED; | |
887 } else | |
888 #endif /* STORED_FILE_OK */ | |
889 | |
890 #ifdef FORCE_STORED | |
891 if (buf != (char*)0) { /* force stored block */ | |
892 #else | |
893 if (stored_len+4 <= opt_lenb && buf != (char*)0) { | |
894 /* 4: two words for the lengths */ | |
895 #endif | |
896 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. | |
897 * Otherwise we can't have processed more than WSIZE input bytes since | |
898 * the last block flush, because compression would have been | |
899 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to | |
900 * transform a block into a stored block. | |
901 */ | |
902 ct_stored_block(s, buf, stored_len, eof); | |
903 | |
904 #ifdef FORCE_STATIC | |
905 } else if (static_lenb >= 0) { /* force static trees */ | |
906 #else | |
907 } else if (static_lenb == opt_lenb) { | |
908 #endif | |
909 send_bits(s, (STATIC_TREES<<1)+eof, 3); | |
910 compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree); | |
911 s->compressed_len += 3 + s->static_len; | |
912 } else { | |
913 send_bits(s, (DYN_TREES<<1)+eof, 3); | |
914 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, | |
915 max_blindex+1); | |
916 compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree); | |
917 s->compressed_len += 3 + s->opt_len; | |
918 } | |
919 Assert (s->compressed_len == s->bits_sent, "bad compressed size"); | |
920 init_block(s); | |
921 | |
922 if (eof) { | |
923 bi_windup(s); | |
924 s->compressed_len += 7; /* align on byte boundary */ | |
925 } | |
926 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, | |
927 s->compressed_len-7*eof)); | |
928 | |
929 return s->compressed_len >> 3; | |
930 } | |
931 | |
932 /* =========================================================================== | |
933 * Save the match info and tally the frequency counts. Return true if | |
934 * the current block must be flushed. | |
935 */ | |
936 int ct_tally (s, dist, lc) | |
937 deflate_state *s; | |
938 int dist; /* distance of matched string */ | |
939 int lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ | |
940 { | |
941 s->d_buf[s->last_lit] = (ush)dist; | |
942 s->l_buf[s->last_lit++] = (uch)lc; | |
943 if (dist == 0) { | |
944 /* lc is the unmatched char */ | |
945 s->dyn_ltree[lc].Freq++; | |
946 } else { | |
947 s->matches++; | |
948 /* Here, lc is the match length - MIN_MATCH */ | |
949 dist--; /* dist = match distance - 1 */ | |
950 Assert((ush)dist < (ush)MAX_DIST(s) && | |
951 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && | |
952 (ush)d_code(dist) < (ush)D_CODES, "ct_tally: bad match"); | |
953 | |
954 s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++; | |
955 s->dyn_dtree[d_code(dist)].Freq++; | |
956 } | |
957 | |
958 /* Try to guess if it is profitable to stop the current block here */ | |
959 if (s->level > 2 && (s->last_lit & 0xfff) == 0) { | |
960 /* Compute an upper bound for the compressed length */ | |
961 ulg out_length = (ulg)s->last_lit*8L; | |
962 ulg in_length = (ulg)s->strstart - s->block_start; | |
963 int dcode; | |
964 for (dcode = 0; dcode < D_CODES; dcode++) { | |
965 out_length += (ulg)s->dyn_dtree[dcode].Freq * | |
966 (5L+extra_dbits[dcode]); | |
967 } | |
968 out_length >>= 3; | |
969 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", | |
970 s->last_lit, in_length, out_length, | |
971 100L - out_length*100L/in_length)); | |
972 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; | |
973 } | |
974 return (s->last_lit == s->lit_bufsize-1); | |
975 /* We avoid equality with lit_bufsize because of wraparound at 64K | |
976 * on 16 bit machines and because stored blocks are restricted to | |
977 * 64K-1 bytes. | |
978 */ | |
979 } | |
980 | |
981 /* =========================================================================== | |
982 * Send the block data compressed using the given Huffman trees | |
983 */ | |
984 local void compress_block(s, ltree, dtree) | |
985 deflate_state *s; | |
986 ct_data *ltree; /* literal tree */ | |
987 ct_data *dtree; /* distance tree */ | |
988 { | |
989 unsigned dist; /* distance of matched string */ | |
990 int lc; /* match length or unmatched char (if dist == 0) */ | |
991 unsigned lx = 0; /* running index in l_buf */ | |
992 unsigned code; /* the code to send */ | |
993 int extra; /* number of extra bits to send */ | |
994 | |
995 if (s->last_lit != 0) do { | |
996 dist = s->d_buf[lx]; | |
997 lc = s->l_buf[lx++]; | |
998 if (dist == 0) { | |
999 send_code(s, lc, ltree); /* send a literal byte */ | |
1000 Tracecv(isgraph(lc), (stderr," '%c' ", lc)); | |
1001 } else { | |
1002 /* Here, lc is the match length - MIN_MATCH */ | |
1003 code = length_code[lc]; | |
1004 send_code(s, code+LITERALS+1, ltree); /* send the length code */ | |
1005 extra = extra_lbits[code]; | |
1006 if (extra != 0) { | |
1007 lc -= base_length[code]; | |
1008 send_bits(s, lc, extra); /* send the extra length bits */ | |
1009 } | |
1010 dist--; /* dist is now the match distance - 1 */ | |
1011 code = d_code(dist); | |
1012 Assert (code < D_CODES, "bad d_code"); | |
1013 | |
1014 send_code(s, code, dtree); /* send the distance code */ | |
1015 extra = extra_dbits[code]; | |
1016 if (extra != 0) { | |
1017 dist -= base_dist[code]; | |
1018 send_bits(s, dist, extra); /* send the extra distance bits */ | |
1019 } | |
1020 } /* literal or match pair ? */ | |
1021 | |
1022 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ | |
1023 Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow"); | |
1024 | |
1025 } while (lx < s->last_lit); | |
1026 | |
1027 send_code(s, END_BLOCK, ltree); | |
1028 s->last_eob_len = ltree[END_BLOCK].Len; | |
1029 } | |
1030 | |
1031 /* =========================================================================== | |
1032 * Set the data type to ASCII or BINARY, using a crude approximation: | |
1033 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise. | |
1034 * IN assertion: the fields freq of dyn_ltree are set and the total of all | |
1035 * frequencies does not exceed 64K (to fit in an int on 16 bit machines). | |
1036 */ | |
1037 local void set_data_type(s) | |
1038 deflate_state *s; | |
1039 { | |
1040 int n = 0; | |
1041 unsigned ascii_freq = 0; | |
1042 unsigned bin_freq = 0; | |
1043 while (n < 7) bin_freq += s->dyn_ltree[n++].Freq; | |
1044 while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq; | |
1045 while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq; | |
1046 s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? BINARY : ASCII); | |
1047 } | |
1048 | |
1049 /* =========================================================================== | |
1050 * Reverse the first len bits of a code, using straightforward code (a faster | |
1051 * method would use a table) | |
1052 * IN assertion: 1 <= len <= 15 | |
1053 */ | |
1054 local unsigned bi_reverse(code, len) | |
1055 unsigned code; /* the value to invert */ | |
1056 int len; /* its bit length */ | |
1057 { | |
1058 register unsigned res = 0; | |
1059 do { | |
1060 res |= code & 1; | |
1061 code >>= 1, res <<= 1; | |
1062 } while (--len > 0); | |
1063 return res >> 1; | |
1064 } | |
1065 | |
1066 /* =========================================================================== | |
1067 * Flush the bit buffer, keeping at most 7 bits in it. | |
1068 */ | |
1069 local void bi_flush(s) | |
1070 deflate_state *s; | |
1071 { | |
1072 if (s->bi_valid == 16) { | |
1073 put_short(s, s->bi_buf); | |
1074 s->bi_buf = 0; | |
1075 s->bi_valid = 0; | |
1076 } else if (s->bi_valid >= 8) { | |
1077 put_byte(s, (Byte)s->bi_buf); | |
1078 s->bi_buf >>= 8; | |
1079 s->bi_valid -= 8; | |
1080 } | |
1081 } | |
1082 | |
1083 /* =========================================================================== | |
1084 * Flush the bit buffer and align the output on a byte boundary | |
1085 */ | |
1086 local void bi_windup(s) | |
1087 deflate_state *s; | |
1088 { | |
1089 if (s->bi_valid > 8) { | |
1090 put_short(s, s->bi_buf); | |
1091 } else if (s->bi_valid > 0) { | |
1092 put_byte(s, (Byte)s->bi_buf); | |
1093 } | |
1094 s->bi_buf = 0; | |
1095 s->bi_valid = 0; | |
1096 #ifdef DEBUG | |
1097 s->bits_sent = (s->bits_sent+7) & ~7; | |
1098 #endif | |
1099 } | |
1100 | |
1101 /* =========================================================================== | |
1102 * Copy a stored block, storing first the length and its | |
1103 * one's complement if requested. | |
1104 */ | |
1105 local void copy_block(s, buf, len, header) | |
1106 deflate_state *s; | |
1107 charf *buf; /* the input data */ | |
1108 unsigned len; /* its length */ | |
1109 int header; /* true if block header must be written */ | |
1110 { | |
1111 bi_windup(s); /* align on byte boundary */ | |
1112 s->last_eob_len = 8; /* enough lookahead for inflate */ | |
1113 | |
1114 if (header) { | |
1115 put_short(s, (ush)len); | |
1116 put_short(s, (ush)~len); | |
1117 #ifdef DEBUG | |
1118 s->bits_sent += 2*16; | |
1119 #endif | |
1120 } | |
1121 #ifdef DEBUG | |
1122 s->bits_sent += (ulg)len<<3; | |
1123 #endif | |
1124 while (len--) { | |
1125 put_byte(s, *buf++); | |
1126 } | |
1127 } |