Mercurial > ~darius > hgwebdir.cgi > paradise_server
comparison zlib/inftrees.c @ 10:1040ca591f2e
First entry of Paradise Server 2.9 patch 10 Beta
author | darius |
---|---|
date | Sat, 06 Dec 1997 04:37:18 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:331055a97a9d | 10:1040ca591f2e |
---|---|
1 /* inftrees.c -- generate Huffman trees for efficient decoding | |
2 * Copyright (C) 1995 Mark Adler | |
3 * For conditions of distribution and use, see copyright notice in zlib.h | |
4 */ | |
5 | |
6 #include "zutil.h" | |
7 #include "inftrees.h" | |
8 | |
9 struct internal_state {int dummy;}; /* for buggy compilers */ | |
10 | |
11 /* simplify the use of the inflate_huft type with some defines */ | |
12 #define base more.Base | |
13 #define next more.Next | |
14 #define exop word.what.Exop | |
15 #define bits word.what.Bits | |
16 | |
17 | |
18 local int huft_build OF(( | |
19 uIntf *, /* code lengths in bits */ | |
20 uInt, /* number of codes */ | |
21 uInt, /* number of "simple" codes */ | |
22 uIntf *, /* list of base values for non-simple codes */ | |
23 uIntf *, /* list of extra bits for non-simple codes */ | |
24 inflate_huft * FAR*,/* result: starting table */ | |
25 uIntf *, /* maximum lookup bits (returns actual) */ | |
26 z_stream *)); /* for zalloc function */ | |
27 | |
28 local voidpf falloc OF(( | |
29 voidpf, /* opaque pointer (not used) */ | |
30 uInt, /* number of items */ | |
31 uInt)); /* size of item */ | |
32 | |
33 local void ffree OF(( | |
34 voidpf q, /* opaque pointer (not used) */ | |
35 voidpf p)); /* what to free (not used) */ | |
36 | |
37 /* Tables for deflate from PKZIP's appnote.txt. */ | |
38 local uInt cplens[] = { /* Copy lengths for literal codes 257..285 */ | |
39 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, | |
40 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; | |
41 /* actually lengths - 2; also see note #13 above about 258 */ | |
42 local uInt cplext[] = { /* Extra bits for literal codes 257..285 */ | |
43 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, | |
44 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 192, 192}; /* 192==invalid */ | |
45 local uInt cpdist[] = { /* Copy offsets for distance codes 0..29 */ | |
46 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, | |
47 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, | |
48 8193, 12289, 16385, 24577}; | |
49 local uInt cpdext[] = { /* Extra bits for distance codes */ | |
50 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, | |
51 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, | |
52 12, 12, 13, 13}; | |
53 | |
54 /* | |
55 Huffman code decoding is performed using a multi-level table lookup. | |
56 The fastest way to decode is to simply build a lookup table whose | |
57 size is determined by the longest code. However, the time it takes | |
58 to build this table can also be a factor if the data being decoded | |
59 is not very long. The most common codes are necessarily the | |
60 shortest codes, so those codes dominate the decoding time, and hence | |
61 the speed. The idea is you can have a shorter table that decodes the | |
62 shorter, more probable codes, and then point to subsidiary tables for | |
63 the longer codes. The time it costs to decode the longer codes is | |
64 then traded against the time it takes to make longer tables. | |
65 | |
66 This results of this trade are in the variables lbits and dbits | |
67 below. lbits is the number of bits the first level table for literal/ | |
68 length codes can decode in one step, and dbits is the same thing for | |
69 the distance codes. Subsequent tables are also less than or equal to | |
70 those sizes. These values may be adjusted either when all of the | |
71 codes are shorter than that, in which case the longest code length in | |
72 bits is used, or when the shortest code is *longer* than the requested | |
73 table size, in which case the length of the shortest code in bits is | |
74 used. | |
75 | |
76 There are two different values for the two tables, since they code a | |
77 different number of possibilities each. The literal/length table | |
78 codes 286 possible values, or in a flat code, a little over eight | |
79 bits. The distance table codes 30 possible values, or a little less | |
80 than five bits, flat. The optimum values for speed end up being | |
81 about one bit more than those, so lbits is 8+1 and dbits is 5+1. | |
82 The optimum values may differ though from machine to machine, and | |
83 possibly even between compilers. Your mileage may vary. | |
84 */ | |
85 | |
86 | |
87 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */ | |
88 #define BMAX 15 /* maximum bit length of any code */ | |
89 #define N_MAX 288 /* maximum number of codes in any set */ | |
90 | |
91 #ifdef DEBUG | |
92 uInt inflate_hufts; | |
93 #endif | |
94 | |
95 local int huft_build(b, n, s, d, e, t, m, zs) | |
96 uIntf *b; /* code lengths in bits (all assumed <= BMAX) */ | |
97 uInt n; /* number of codes (assumed <= N_MAX) */ | |
98 uInt s; /* number of simple-valued codes (0..s-1) */ | |
99 uIntf *d; /* list of base values for non-simple codes */ | |
100 uIntf *e; /* list of extra bits for non-simple codes */ | |
101 inflate_huft * FAR *t; /* result: starting table */ | |
102 uIntf *m; /* maximum lookup bits, returns actual */ | |
103 z_stream *zs; /* for zalloc function */ | |
104 /* Given a list of code lengths and a maximum table size, make a set of | |
105 tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR | |
106 if the given code set is incomplete (the tables are still built in this | |
107 case), Z_DATA_ERROR if the input is invalid (all zero length codes or an | |
108 over-subscribed set of lengths), or Z_MEM_ERROR if not enough memory. */ | |
109 { | |
110 | |
111 uInt a; /* counter for codes of length k */ | |
112 uInt c[BMAX+1]; /* bit length count table */ | |
113 uInt f; /* i repeats in table every f entries */ | |
114 int g; /* maximum code length */ | |
115 int h; /* table level */ | |
116 register uInt i; /* counter, current code */ | |
117 register uInt j; /* counter */ | |
118 register int k; /* number of bits in current code */ | |
119 int l; /* bits per table (returned in m) */ | |
120 register uIntf *p; /* pointer into c[], b[], or v[] */ | |
121 inflate_huft *q; /* points to current table */ | |
122 struct inflate_huft_s r; /* table entry for structure assignment */ | |
123 inflate_huft *u[BMAX]; /* table stack */ | |
124 uInt v[N_MAX]; /* values in order of bit length */ | |
125 register int w; /* bits before this table == (l * h) */ | |
126 uInt x[BMAX+1]; /* bit offsets, then code stack */ | |
127 uIntf *xp; /* pointer into x */ | |
128 int y; /* number of dummy codes added */ | |
129 uInt z; /* number of entries in current table */ | |
130 | |
131 | |
132 /* Generate counts for each bit length */ | |
133 p = c; | |
134 #define C0 *p++ = 0; | |
135 #define C2 C0 C0 C0 C0 | |
136 #define C4 C2 C2 C2 C2 | |
137 C4 /* clear c[]--assume BMAX+1 is 16 */ | |
138 p = b; i = n; | |
139 do { | |
140 c[*p++]++; /* assume all entries <= BMAX */ | |
141 } while (--i); | |
142 if (c[0] == n) /* null input--all zero length codes */ | |
143 { | |
144 *t = (inflate_huft *)Z_NULL; | |
145 *m = 0; | |
146 return Z_OK; | |
147 } | |
148 | |
149 | |
150 /* Find minimum and maximum length, bound *m by those */ | |
151 l = *m; | |
152 for (j = 1; j <= BMAX; j++) | |
153 if (c[j]) | |
154 break; | |
155 k = j; /* minimum code length */ | |
156 if ((uInt)l < j) | |
157 l = j; | |
158 for (i = BMAX; i; i--) | |
159 if (c[i]) | |
160 break; | |
161 g = i; /* maximum code length */ | |
162 if ((uInt)l > i) | |
163 l = i; | |
164 *m = l; | |
165 | |
166 | |
167 /* Adjust last length count to fill out codes, if needed */ | |
168 for (y = 1 << j; j < i; j++, y <<= 1) | |
169 if ((y -= c[j]) < 0) | |
170 return Z_DATA_ERROR; | |
171 if ((y -= c[i]) < 0) | |
172 return Z_DATA_ERROR; | |
173 c[i] += y; | |
174 | |
175 | |
176 /* Generate starting offsets into the value table for each length */ | |
177 x[1] = j = 0; | |
178 p = c + 1; xp = x + 2; | |
179 while (--i) { /* note that i == g from above */ | |
180 *xp++ = (j += *p++); | |
181 } | |
182 | |
183 | |
184 /* Make a table of values in order of bit lengths */ | |
185 p = b; i = 0; | |
186 do { | |
187 if ((j = *p++) != 0) | |
188 v[x[j]++] = i; | |
189 } while (++i < n); | |
190 | |
191 | |
192 /* Generate the Huffman codes and for each, make the table entries */ | |
193 x[0] = i = 0; /* first Huffman code is zero */ | |
194 p = v; /* grab values in bit order */ | |
195 h = -1; /* no tables yet--level -1 */ | |
196 w = -l; /* bits decoded == (l * h) */ | |
197 u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */ | |
198 q = (inflate_huft *)Z_NULL; /* ditto */ | |
199 z = 0; /* ditto */ | |
200 | |
201 /* go through the bit lengths (k already is bits in shortest code) */ | |
202 for (; k <= g; k++) | |
203 { | |
204 a = c[k]; | |
205 while (a--) | |
206 { | |
207 /* here i is the Huffman code of length k bits for value *p */ | |
208 /* make tables up to required level */ | |
209 while (k > w + l) | |
210 { | |
211 h++; | |
212 w += l; /* previous table always l bits */ | |
213 | |
214 /* compute minimum size table less than or equal to l bits */ | |
215 z = (z = g - w) > (uInt)l ? l : z; /* table size upper limit */ | |
216 if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */ | |
217 { /* too few codes for k-w bit table */ | |
218 f -= a + 1; /* deduct codes from patterns left */ | |
219 xp = c + k; | |
220 if (j < z) | |
221 while (++j < z) /* try smaller tables up to z bits */ | |
222 { | |
223 if ((f <<= 1) <= *++xp) | |
224 break; /* enough codes to use up j bits */ | |
225 f -= *xp; /* else deduct codes from patterns */ | |
226 } | |
227 } | |
228 z = 1 << j; /* table entries for j-bit table */ | |
229 | |
230 /* allocate and link in new table */ | |
231 if ((q = (inflate_huft *)ZALLOC | |
232 (zs,z + 1,sizeof(inflate_huft))) == Z_NULL) | |
233 { | |
234 if (h) | |
235 inflate_trees_free(u[0], zs); | |
236 return Z_MEM_ERROR; /* not enough memory */ | |
237 } | |
238 #ifdef DEBUG | |
239 inflate_hufts += z + 1; | |
240 #endif | |
241 *t = q + 1; /* link to list for huft_free() */ | |
242 *(t = &(q->next)) = Z_NULL; | |
243 u[h] = ++q; /* table starts after link */ | |
244 | |
245 /* connect to last table, if there is one */ | |
246 if (h) | |
247 { | |
248 x[h] = i; /* save pattern for backing up */ | |
249 r.bits = (Byte)l; /* bits to dump before this table */ | |
250 r.exop = (Byte)j; /* bits in this table */ | |
251 r.next = q; /* pointer to this table */ | |
252 j = i >> (w - l); /* (get around Turbo C bug) */ | |
253 u[h-1][j] = r; /* connect to last table */ | |
254 } | |
255 } | |
256 | |
257 /* set up table entry in r */ | |
258 r.bits = (Byte)(k - w); | |
259 if (p >= v + n) | |
260 r.exop = 128 + 64; /* out of values--invalid code */ | |
261 else if (*p < s) | |
262 { | |
263 r.exop = (Byte)(*p < 256 ? 0 : 32 + 64); /* 256 is end-of-block */ | |
264 r.base = *p++; /* simple code is just the value */ | |
265 } | |
266 else | |
267 { | |
268 r.exop = (Byte)e[*p - s] + 16 + 64; /* non-simple--look up in lists */ | |
269 r.base = d[*p++ - s]; | |
270 } | |
271 | |
272 /* fill code-like entries with r */ | |
273 f = 1 << (k - w); | |
274 for (j = i >> w; j < z; j += f) | |
275 q[j] = r; | |
276 | |
277 /* backwards increment the k-bit code i */ | |
278 for (j = 1 << (k - 1); i & j; j >>= 1) | |
279 i ^= j; | |
280 i ^= j; | |
281 | |
282 /* backup over finished tables */ | |
283 while ((i & ((1 << w) - 1)) != x[h]) | |
284 { | |
285 h--; /* don't need to update q */ | |
286 w -= l; | |
287 } | |
288 } | |
289 } | |
290 | |
291 | |
292 /* Return Z_BUF_ERROR if we were given an incomplete table */ | |
293 return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK; | |
294 } | |
295 | |
296 | |
297 int inflate_trees_bits(c, bb, tb, z) | |
298 uIntf *c; /* 19 code lengths */ | |
299 uIntf *bb; /* bits tree desired/actual depth */ | |
300 inflate_huft * FAR *tb; /* bits tree result */ | |
301 z_stream *z; /* for zfree function */ | |
302 { | |
303 int r; | |
304 | |
305 r = huft_build(c, 19, 19, (uIntf*)Z_NULL, (uIntf*)Z_NULL, tb, bb, z); | |
306 if (r == Z_DATA_ERROR) | |
307 z->msg = "oversubscribed dynamic bit lengths tree"; | |
308 else if (r == Z_BUF_ERROR) | |
309 { | |
310 inflate_trees_free(*tb, z); | |
311 z->msg = "incomplete dynamic bit lengths tree"; | |
312 r = Z_DATA_ERROR; | |
313 } | |
314 return r; | |
315 } | |
316 | |
317 | |
318 int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z) | |
319 uInt nl; /* number of literal/length codes */ | |
320 uInt nd; /* number of distance codes */ | |
321 uIntf *c; /* that many (total) code lengths */ | |
322 uIntf *bl; /* literal desired/actual bit depth */ | |
323 uIntf *bd; /* distance desired/actual bit depth */ | |
324 inflate_huft * FAR *tl; /* literal/length tree result */ | |
325 inflate_huft * FAR *td; /* distance tree result */ | |
326 z_stream *z; /* for zfree function */ | |
327 { | |
328 int r; | |
329 | |
330 /* build literal/length tree */ | |
331 if ((r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z)) != Z_OK) | |
332 { | |
333 if (r == Z_DATA_ERROR) | |
334 z->msg = "oversubscribed literal/length tree"; | |
335 else if (r == Z_BUF_ERROR) | |
336 { | |
337 inflate_trees_free(*tl, z); | |
338 z->msg = "incomplete literal/length tree"; | |
339 r = Z_DATA_ERROR; | |
340 } | |
341 return r; | |
342 } | |
343 | |
344 /* build distance tree */ | |
345 if ((r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z)) != Z_OK) | |
346 { | |
347 if (r == Z_DATA_ERROR) | |
348 z->msg = "oversubscribed literal/length tree"; | |
349 else if (r == Z_BUF_ERROR) { | |
350 #ifdef PKZIP_BUG_WORKAROUND | |
351 r = Z_OK; | |
352 } | |
353 #else | |
354 inflate_trees_free(*td, z); | |
355 z->msg = "incomplete literal/length tree"; | |
356 r = Z_DATA_ERROR; | |
357 } | |
358 inflate_trees_free(*tl, z); | |
359 return r; | |
360 #endif | |
361 } | |
362 | |
363 /* done */ | |
364 return Z_OK; | |
365 } | |
366 | |
367 | |
368 /* build fixed tables only once--keep them here */ | |
369 local int fixed_lock = 0; | |
370 local int fixed_built = 0; | |
371 #define FIXEDH 530 /* number of hufts used by fixed tables */ | |
372 local uInt fixed_left = FIXEDH; | |
373 local inflate_huft fixed_mem[FIXEDH]; | |
374 local uInt fixed_bl; | |
375 local uInt fixed_bd; | |
376 local inflate_huft *fixed_tl; | |
377 local inflate_huft *fixed_td; | |
378 | |
379 | |
380 local voidpf falloc(q, n, s) | |
381 voidpf q; /* opaque pointer (not used) */ | |
382 uInt n; /* number of items */ | |
383 uInt s; /* size of item */ | |
384 { | |
385 Assert(s == sizeof(inflate_huft) && n <= fixed_left, | |
386 "inflate_trees falloc overflow"); | |
387 if (q) s++; /* to make some compilers happy */ | |
388 fixed_left -= n; | |
389 return (voidpf)(fixed_mem + fixed_left); | |
390 } | |
391 | |
392 | |
393 local void ffree(q, p) | |
394 voidpf q; | |
395 voidpf p; | |
396 { | |
397 Assert(0, "inflate_trees ffree called!"); | |
398 if (q) q = p; /* to make some compilers happy */ | |
399 } | |
400 | |
401 | |
402 int inflate_trees_fixed(bl, bd, tl, td) | |
403 uIntf *bl; /* literal desired/actual bit depth */ | |
404 uIntf *bd; /* distance desired/actual bit depth */ | |
405 inflate_huft * FAR *tl; /* literal/length tree result */ | |
406 inflate_huft * FAR *td; /* distance tree result */ | |
407 { | |
408 /* build fixed tables if not built already--lock out other instances */ | |
409 while (++fixed_lock > 1) | |
410 fixed_lock--; | |
411 if (!fixed_built) | |
412 { | |
413 int k; /* temporary variable */ | |
414 unsigned c[288]; /* length list for huft_build */ | |
415 z_stream z; /* for falloc function */ | |
416 | |
417 /* set up fake z_stream for memory routines */ | |
418 z.zalloc = falloc; | |
419 z.zfree = ffree; | |
420 z.opaque = Z_NULL; | |
421 | |
422 /* literal table */ | |
423 for (k = 0; k < 144; k++) | |
424 c[k] = 8; | |
425 for (; k < 256; k++) | |
426 c[k] = 9; | |
427 for (; k < 280; k++) | |
428 c[k] = 7; | |
429 for (; k < 288; k++) | |
430 c[k] = 8; | |
431 fixed_bl = 7; | |
432 huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z); | |
433 | |
434 /* distance table */ | |
435 for (k = 0; k < 30; k++) | |
436 c[k] = 5; | |
437 fixed_bd = 5; | |
438 huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z); | |
439 | |
440 /* done */ | |
441 fixed_built = 1; | |
442 } | |
443 fixed_lock--; | |
444 *bl = fixed_bl; | |
445 *bd = fixed_bd; | |
446 *tl = fixed_tl; | |
447 *td = fixed_td; | |
448 return Z_OK; | |
449 } | |
450 | |
451 | |
452 int inflate_trees_free(t, z) | |
453 inflate_huft *t; /* table to free */ | |
454 z_stream *z; /* for zfree function */ | |
455 /* Free the malloc'ed tables built by huft_build(), which makes a linked | |
456 list of the tables it made, with the links in a dummy first entry of | |
457 each table. */ | |
458 { | |
459 register inflate_huft *p, *q; | |
460 | |
461 /* Go through linked list, freeing from the malloced (t[-1]) address. */ | |
462 p = t; | |
463 while (p != Z_NULL) | |
464 { | |
465 q = (--p)->next; | |
466 ZFREE(z,p); | |
467 p = q; | |
468 } | |
469 return Z_OK; | |
470 } |