Mercurial > ~darius > hgwebdir.cgi > paradise_server
comparison src/zlib/trees.c @ 10:1040ca591f2e
First entry of Paradise Server 2.9 patch 10 Beta
author | darius |
---|---|
date | Sat, 06 Dec 1997 04:37:18 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
9:331055a97a9d | 10:1040ca591f2e |
---|---|
1 /* trees.c -- output deflated data using Huffman coding | |
2 * Copyright (C) 1995 Jean-loup Gailly | |
3 * For conditions of distribution and use, see copyright notice in zlib.h | |
4 */ | |
5 | |
6 /* | |
7 * ALGORITHM | |
8 * | |
9 * The "deflation" process uses several Huffman trees. The more | |
10 * common source values are represented by shorter bit sequences. | |
11 * | |
12 * Each code tree is stored in a compressed form which is itself | |
13 * a Huffman encoding of the lengths of all the code strings (in | |
14 * ascending order by source values). The actual code strings are | |
15 * reconstructed from the lengths in the inflate process, as described | |
16 * in the deflate specification. | |
17 * | |
18 * REFERENCES | |
19 * | |
20 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". | |
21 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc | |
22 * | |
23 * Storer, James A. | |
24 * Data Compression: Methods and Theory, pp. 49-50. | |
25 * Computer Science Press, 1988. ISBN 0-7167-8156-5. | |
26 * | |
27 * Sedgewick, R. | |
28 * Algorithms, p290. | |
29 * Addison-Wesley, 1983. ISBN 0-201-06672-6. | |
30 */ | |
31 | |
32 /* $Id: trees.c,v 1.1.1.1 1997/12/06 04:37:17 darius Exp $ */ | |
33 | |
34 #include "deflate.h" | |
35 | |
36 #ifdef DEBUG | |
37 # include <ctype.h> | |
38 #endif | |
39 | |
40 /* =========================================================================== | |
41 * Constants | |
42 */ | |
43 | |
44 #define MAX_BL_BITS 7 | |
45 /* Bit length codes must not exceed MAX_BL_BITS bits */ | |
46 | |
47 #define END_BLOCK 256 | |
48 /* end of block literal code */ | |
49 | |
50 #define REP_3_6 16 | |
51 /* repeat previous bit length 3-6 times (2 bits of repeat count) */ | |
52 | |
53 #define REPZ_3_10 17 | |
54 /* repeat a zero length 3-10 times (3 bits of repeat count) */ | |
55 | |
56 #define REPZ_11_138 18 | |
57 /* repeat a zero length 11-138 times (7 bits of repeat count) */ | |
58 | |
59 local int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ | |
60 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; | |
61 | |
62 local int extra_dbits[D_CODES] /* extra bits for each distance code */ | |
63 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; | |
64 | |
65 local int extra_blbits[BL_CODES]/* extra bits for each bit length code */ | |
66 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; | |
67 | |
68 local uch bl_order[BL_CODES] | |
69 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; | |
70 /* The lengths of the bit length codes are sent in order of decreasing | |
71 * probability, to avoid transmitting the lengths for unused bit length codes. | |
72 */ | |
73 | |
74 #define Buf_size (8 * 2*sizeof(char)) | |
75 /* Number of bits used within bi_buf. (bi_buf might be implemented on | |
76 * more than 16 bits on some systems.) | |
77 */ | |
78 | |
79 /* =========================================================================== | |
80 * Local data. These are initialized only once. | |
81 * To do: initialize at compile time to be completely reentrant. ??? | |
82 */ | |
83 | |
84 local ct_data static_ltree[L_CODES+2]; | |
85 /* The static literal tree. Since the bit lengths are imposed, there is no | |
86 * need for the L_CODES extra codes used during heap construction. However | |
87 * The codes 286 and 287 are needed to build a canonical tree (see ct_init | |
88 * below). | |
89 */ | |
90 | |
91 local ct_data static_dtree[D_CODES]; | |
92 /* The static distance tree. (Actually a trivial tree since all codes use | |
93 * 5 bits.) | |
94 */ | |
95 | |
96 local uch dist_code[512]; | |
97 /* distance codes. The first 256 values correspond to the distances | |
98 * 3 .. 258, the last 256 values correspond to the top 8 bits of | |
99 * the 15 bit distances. | |
100 */ | |
101 | |
102 local uch length_code[MAX_MATCH-MIN_MATCH+1]; | |
103 /* length code for each normalized match length (0 == MIN_MATCH) */ | |
104 | |
105 local int base_length[LENGTH_CODES]; | |
106 /* First normalized length for each code (0 = MIN_MATCH) */ | |
107 | |
108 local int base_dist[D_CODES]; | |
109 /* First normalized distance for each code (0 = distance of 1) */ | |
110 | |
111 struct static_tree_desc_s { | |
112 ct_data *static_tree; /* static tree or NULL */ | |
113 int *extra_bits; /* extra bits for each code or NULL */ | |
114 int extra_base; /* base index for extra_bits */ | |
115 int elems; /* max number of elements in the tree */ | |
116 int max_length; /* max bit length for the codes */ | |
117 }; | |
118 | |
119 local static_tree_desc static_l_desc = | |
120 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; | |
121 | |
122 local static_tree_desc static_d_desc = | |
123 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; | |
124 | |
125 local static_tree_desc static_bl_desc = | |
126 {(ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; | |
127 | |
128 /* =========================================================================== | |
129 * Local (static) routines in this file. | |
130 */ | |
131 | |
132 local void ct_static_init __P((void)); | |
133 local void init_block __P((deflate_state *s)); | |
134 local void pqdownheap __P((deflate_state *s, ct_data *tree, int k)); | |
135 local void gen_bitlen __P((deflate_state *s, tree_desc *desc)); | |
136 local void gen_codes __P((ct_data *tree, int max_code, ush bl_count[])); | |
137 local void build_tree __P((deflate_state *s, tree_desc *desc)); | |
138 local void scan_tree __P((deflate_state *s, ct_data *tree, int max_code)); | |
139 local void send_tree __P((deflate_state *s, ct_data *tree, int max_code)); | |
140 local int build_bl_tree __P((deflate_state *s)); | |
141 local void send_all_trees __P((deflate_state *s, int lcodes, int dcodes, | |
142 int blcodes)); | |
143 local void compress_block __P((deflate_state *s, ct_data *ltree, | |
144 ct_data *dtree)); | |
145 local void set_data_type __P((deflate_state *s)); | |
146 local void send_bits __P((deflate_state *s, int value, int length)); | |
147 local unsigned bi_reverse __P((unsigned value, int length)); | |
148 local void bi_windup __P((deflate_state *s)); | |
149 local void copy_block __P((deflate_state *s, char *buf, unsigned len, | |
150 int header)); | |
151 | |
152 #ifndef DEBUG | |
153 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) | |
154 /* Send a code of the given tree. c and tree must not have side effects */ | |
155 | |
156 #else /* DEBUG */ | |
157 # define send_code(s, c, tree) \ | |
158 { if (verbose>1) fprintf(stderr,"\ncd %3d ",(c)); \ | |
159 send_bits(s, tree[c].Code, tree[c].Len); } | |
160 #endif | |
161 | |
162 #define d_code(dist) \ | |
163 ((dist) < 256 ? dist_code[dist] : dist_code[256+((dist)>>7)]) | |
164 /* Mapping from a distance to a distance code. dist is the distance - 1 and | |
165 * must not have side effects. dist_code[256] and dist_code[257] are never | |
166 * used. | |
167 */ | |
168 | |
169 #define MAX(a,b) (a >= b ? a : b) | |
170 /* the arguments must not have side effects */ | |
171 | |
172 /* =========================================================================== | |
173 * Initialize the various 'constant' tables. | |
174 * To do: do this at compile time. | |
175 */ | |
176 local void ct_static_init() | |
177 { | |
178 int n; /* iterates over tree elements */ | |
179 int bits; /* bit counter */ | |
180 int length; /* length value */ | |
181 int code; /* code value */ | |
182 int dist; /* distance index */ | |
183 ush bl_count[MAX_BITS+1]; | |
184 /* number of codes at each bit length for an optimal tree */ | |
185 | |
186 /* Initialize the mapping length (0..255) -> length code (0..28) */ | |
187 length = 0; | |
188 for (code = 0; code < LENGTH_CODES-1; code++) { | |
189 base_length[code] = length; | |
190 for (n = 0; n < (1<<extra_lbits[code]); n++) { | |
191 length_code[length++] = (uch)code; | |
192 } | |
193 } | |
194 Assert (length == 256, "ct_static_init: length != 256"); | |
195 /* Note that the length 255 (match length 258) can be represented | |
196 * in two different ways: code 284 + 5 bits or code 285, so we | |
197 * overwrite length_code[255] to use the best encoding: | |
198 */ | |
199 length_code[length-1] = (uch)code; | |
200 | |
201 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ | |
202 dist = 0; | |
203 for (code = 0 ; code < 16; code++) { | |
204 base_dist[code] = dist; | |
205 for (n = 0; n < (1<<extra_dbits[code]); n++) { | |
206 dist_code[dist++] = (uch)code; | |
207 } | |
208 } | |
209 Assert (dist == 256, "ct_static_init: dist != 256"); | |
210 dist >>= 7; /* from now on, all distances are divided by 128 */ | |
211 for ( ; code < D_CODES; code++) { | |
212 base_dist[code] = dist << 7; | |
213 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) { | |
214 dist_code[256 + dist++] = (uch)code; | |
215 } | |
216 } | |
217 Assert (dist == 256, "ct_static_init: 256+dist != 512"); | |
218 | |
219 /* Construct the codes of the static literal tree */ | |
220 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; | |
221 n = 0; | |
222 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; | |
223 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; | |
224 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; | |
225 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; | |
226 /* Codes 286 and 287 do not exist, but we must include them in the | |
227 * tree construction to get a canonical Huffman tree (longest code | |
228 * all ones) | |
229 */ | |
230 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); | |
231 | |
232 /* The static distance tree is trivial: */ | |
233 for (n = 0; n < D_CODES; n++) { | |
234 static_dtree[n].Len = 5; | |
235 static_dtree[n].Code = bi_reverse(n, 5); | |
236 } | |
237 } | |
238 | |
239 /* =========================================================================== | |
240 * Initialize the tree data structures for a new zlib stream. | |
241 */ | |
242 void ct_init(s) | |
243 deflate_state *s; | |
244 { | |
245 if (static_dtree[0].Len == 0) { | |
246 ct_static_init(); /* To do: at compile time */ | |
247 } | |
248 | |
249 s->compressed_len = 0L; | |
250 | |
251 s->l_desc.dyn_tree = s->dyn_ltree; | |
252 s->l_desc.stat_desc = &static_l_desc; | |
253 | |
254 s->d_desc.dyn_tree = s->dyn_dtree; | |
255 s->d_desc.stat_desc = &static_d_desc; | |
256 | |
257 s->bl_desc.dyn_tree = s->bl_tree; | |
258 s->bl_desc.stat_desc = &static_bl_desc; | |
259 | |
260 s->bi_buf = 0; | |
261 s->bi_valid = 0; | |
262 #ifdef DEBUG | |
263 s->bits_sent = 0L; | |
264 #endif | |
265 | |
266 /* Initialize the first block of the first file: */ | |
267 init_block(s); | |
268 } | |
269 | |
270 /* =========================================================================== | |
271 * Initialize a new block. | |
272 */ | |
273 local void init_block(s) | |
274 deflate_state *s; | |
275 { | |
276 int n; /* iterates over tree elements */ | |
277 | |
278 /* Initialize the trees. */ | |
279 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; | |
280 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; | |
281 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; | |
282 | |
283 s->dyn_ltree[END_BLOCK].Freq = 1; | |
284 s->opt_len = s->static_len = 0L; | |
285 s->last_lit = s->matches = 0; | |
286 } | |
287 | |
288 #define SMALLEST 1 | |
289 /* Index within the heap array of least frequent node in the Huffman tree */ | |
290 | |
291 | |
292 /* =========================================================================== | |
293 * Remove the smallest element from the heap and recreate the heap with | |
294 * one less element. Updates heap and heap_len. | |
295 */ | |
296 #define pqremove(s, tree, top) \ | |
297 {\ | |
298 top = s->heap[SMALLEST]; \ | |
299 s->heap[SMALLEST] = s->heap[s->heap_len--]; \ | |
300 pqdownheap(s, tree, SMALLEST); \ | |
301 } | |
302 | |
303 /* =========================================================================== | |
304 * Compares to subtrees, using the tree depth as tie breaker when | |
305 * the subtrees have equal frequency. This minimizes the worst case length. | |
306 */ | |
307 #define smaller(tree, n, m, depth) \ | |
308 (tree[n].Freq < tree[m].Freq || \ | |
309 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) | |
310 | |
311 /* =========================================================================== | |
312 * Restore the heap property by moving down the tree starting at node k, | |
313 * exchanging a node with the smallest of its two sons if necessary, stopping | |
314 * when the heap property is re-established (each father smaller than its | |
315 * two sons). | |
316 */ | |
317 local void pqdownheap(s, tree, k) | |
318 deflate_state *s; | |
319 ct_data *tree; /* the tree to restore */ | |
320 int k; /* node to move down */ | |
321 { | |
322 int v = s->heap[k]; | |
323 int j = k << 1; /* left son of k */ | |
324 while (j <= s->heap_len) { | |
325 /* Set j to the smallest of the two sons: */ | |
326 if (j < s->heap_len && | |
327 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) { | |
328 j++; | |
329 } | |
330 /* Exit if v is smaller than both sons */ | |
331 if (smaller(tree, v, s->heap[j], s->depth)) break; | |
332 | |
333 /* Exchange v with the smallest son */ | |
334 s->heap[k] = s->heap[j]; k = j; | |
335 | |
336 /* And continue down the tree, setting j to the left son of k */ | |
337 j <<= 1; | |
338 } | |
339 s->heap[k] = v; | |
340 } | |
341 | |
342 /* =========================================================================== | |
343 * Compute the optimal bit lengths for a tree and update the total bit length | |
344 * for the current block. | |
345 * IN assertion: the fields freq and dad are set, heap[heap_max] and | |
346 * above are the tree nodes sorted by increasing frequency. | |
347 * OUT assertions: the field len is set to the optimal bit length, the | |
348 * array bl_count contains the frequencies for each bit length. | |
349 * The length opt_len is updated; static_len is also updated if stree is | |
350 * not null. | |
351 */ | |
352 local void gen_bitlen(s, desc) | |
353 deflate_state *s; | |
354 tree_desc *desc; /* the tree descriptor */ | |
355 { | |
356 ct_data *tree = desc->dyn_tree; | |
357 int max_code = desc->max_code; | |
358 ct_data *stree = desc->stat_desc->static_tree; | |
359 int *extra = desc->stat_desc->extra_bits; | |
360 int base = desc->stat_desc->extra_base; | |
361 int max_length = desc->stat_desc->max_length; | |
362 int h; /* heap index */ | |
363 int n, m; /* iterate over the tree elements */ | |
364 int bits; /* bit length */ | |
365 int xbits; /* extra bits */ | |
366 ush f; /* frequency */ | |
367 int overflow = 0; /* number of elements with bit length too large */ | |
368 | |
369 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; | |
370 | |
371 /* In a first pass, compute the optimal bit lengths (which may | |
372 * overflow in the case of the bit length tree). | |
373 */ | |
374 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ | |
375 | |
376 for (h = s->heap_max+1; h < HEAP_SIZE; h++) { | |
377 n = s->heap[h]; | |
378 bits = tree[tree[n].Dad].Len + 1; | |
379 if (bits > max_length) bits = max_length, overflow++; | |
380 tree[n].Len = (ush)bits; | |
381 /* We overwrite tree[n].Dad which is no longer needed */ | |
382 | |
383 if (n > max_code) continue; /* not a leaf node */ | |
384 | |
385 s->bl_count[bits]++; | |
386 xbits = 0; | |
387 if (n >= base) xbits = extra[n-base]; | |
388 f = tree[n].Freq; | |
389 s->opt_len += (ulg)f * (bits + xbits); | |
390 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits); | |
391 } | |
392 if (overflow == 0) return; | |
393 | |
394 Trace((stderr,"\nbit length overflow\n")); | |
395 /* This happens for example on obj2 and pic of the Calgary corpus */ | |
396 | |
397 /* Find the first bit length which could increase: */ | |
398 do { | |
399 bits = max_length-1; | |
400 while (s->bl_count[bits] == 0) bits--; | |
401 s->bl_count[bits]--; /* move one leaf down the tree */ | |
402 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */ | |
403 s->bl_count[max_length]--; | |
404 /* The brother of the overflow item also moves one step up, | |
405 * but this does not affect bl_count[max_length] | |
406 */ | |
407 overflow -= 2; | |
408 } while (overflow > 0); | |
409 | |
410 /* Now recompute all bit lengths, scanning in increasing frequency. | |
411 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all | |
412 * lengths instead of fixing only the wrong ones. This idea is taken | |
413 * from 'ar' written by Haruhiko Okumura.) | |
414 */ | |
415 for (bits = max_length; bits != 0; bits--) { | |
416 n = s->bl_count[bits]; | |
417 while (n != 0) { | |
418 m = s->heap[--h]; | |
419 if (m > max_code) continue; | |
420 if (tree[m].Len != (unsigned) bits) { | |
421 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); | |
422 s->opt_len += ((long)bits - (long)tree[m].Len) | |
423 *(long)tree[m].Freq; | |
424 tree[m].Len = (ush)bits; | |
425 } | |
426 n--; | |
427 } | |
428 } | |
429 } | |
430 | |
431 /* =========================================================================== | |
432 * Generate the codes for a given tree and bit counts (which need not be | |
433 * optimal). | |
434 * IN assertion: the array bl_count contains the bit length statistics for | |
435 * the given tree and the field len is set for all tree elements. | |
436 * OUT assertion: the field code is set for all tree elements of non | |
437 * zero code length. | |
438 */ | |
439 local void gen_codes (tree, max_code, bl_count) | |
440 ct_data *tree; /* the tree to decorate */ | |
441 int max_code; /* largest code with non zero frequency */ | |
442 ush bl_count[]; /* number of codes at each bit length */ | |
443 { | |
444 ush next_code[MAX_BITS+1]; /* next code value for each bit length */ | |
445 ush code = 0; /* running code value */ | |
446 int bits; /* bit index */ | |
447 int n; /* code index */ | |
448 | |
449 /* The distribution counts are first used to generate the code values | |
450 * without bit reversal. | |
451 */ | |
452 for (bits = 1; bits <= MAX_BITS; bits++) { | |
453 next_code[bits] = code = (code + bl_count[bits-1]) << 1; | |
454 } | |
455 /* Check that the bit counts in bl_count are consistent. The last code | |
456 * must be all ones. | |
457 */ | |
458 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1, | |
459 "inconsistent bit counts"); | |
460 Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); | |
461 | |
462 for (n = 0; n <= max_code; n++) { | |
463 int len = tree[n].Len; | |
464 if (len == 0) continue; | |
465 /* Now reverse the bits */ | |
466 tree[n].Code = bi_reverse(next_code[len]++, len); | |
467 | |
468 Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", | |
469 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1)); | |
470 } | |
471 } | |
472 | |
473 /* =========================================================================== | |
474 * Construct one Huffman tree and assigns the code bit strings and lengths. | |
475 * Update the total bit length for the current block. | |
476 * IN assertion: the field freq is set for all tree elements. | |
477 * OUT assertions: the fields len and code are set to the optimal bit length | |
478 * and corresponding code. The length opt_len is updated; static_len is | |
479 * also updated if stree is not null. The field max_code is set. | |
480 */ | |
481 local void build_tree(s, desc) | |
482 deflate_state *s; | |
483 tree_desc *desc; /* the tree descriptor */ | |
484 { | |
485 ct_data *tree = desc->dyn_tree; | |
486 ct_data *stree = desc->stat_desc->static_tree; | |
487 int elems = desc->stat_desc->elems; | |
488 int n, m; /* iterate over heap elements */ | |
489 int max_code = -1; /* largest code with non zero frequency */ | |
490 int node = elems; /* next internal node of the tree */ | |
491 int new; /* new node being created */ | |
492 | |
493 /* Construct the initial heap, with least frequent element in | |
494 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. | |
495 * heap[0] is not used. | |
496 */ | |
497 s->heap_len = 0, s->heap_max = HEAP_SIZE; | |
498 | |
499 for (n = 0; n < elems; n++) { | |
500 if (tree[n].Freq != 0) { | |
501 s->heap[++(s->heap_len)] = max_code = n; | |
502 s->depth[n] = 0; | |
503 } else { | |
504 tree[n].Len = 0; | |
505 } | |
506 } | |
507 | |
508 /* The pkzip format requires that at least one distance code exists, | |
509 * and that at least one bit should be sent even if there is only one | |
510 * possible code. So to avoid special checks later on we force at least | |
511 * two codes of non zero frequency. | |
512 */ | |
513 while (s->heap_len < 2) { | |
514 new = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); | |
515 tree[new].Freq = 1; | |
516 s->depth[new] = 0; | |
517 s->opt_len--; if (stree) s->static_len -= stree[new].Len; | |
518 /* new is 0 or 1 so it does not have extra bits */ | |
519 } | |
520 desc->max_code = max_code; | |
521 | |
522 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, | |
523 * establish sub-heaps of increasing lengths: | |
524 */ | |
525 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); | |
526 | |
527 /* Construct the Huffman tree by repeatedly combining the least two | |
528 * frequent nodes. | |
529 */ | |
530 do { | |
531 pqremove(s, tree, n); /* n = node of least frequency */ | |
532 m = s->heap[SMALLEST]; /* m = node of next least frequency */ | |
533 | |
534 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ | |
535 s->heap[--(s->heap_max)] = m; | |
536 | |
537 /* Create a new node father of n and m */ | |
538 tree[node].Freq = tree[n].Freq + tree[m].Freq; | |
539 s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1); | |
540 tree[n].Dad = tree[m].Dad = (ush)node; | |
541 #ifdef DUMP_BL_TREE | |
542 if (tree == s->bl_tree) { | |
543 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", | |
544 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); | |
545 } | |
546 #endif | |
547 /* and insert the new node in the heap */ | |
548 s->heap[SMALLEST] = node++; | |
549 pqdownheap(s, tree, SMALLEST); | |
550 | |
551 } while (s->heap_len >= 2); | |
552 | |
553 s->heap[--(s->heap_max)] = s->heap[SMALLEST]; | |
554 | |
555 /* At this point, the fields freq and dad are set. We can now | |
556 * generate the bit lengths. | |
557 */ | |
558 gen_bitlen(s, (tree_desc *)desc); | |
559 | |
560 /* The field len is now set, we can generate the bit codes */ | |
561 gen_codes ((ct_data *)tree, max_code, s->bl_count); | |
562 } | |
563 | |
564 /* =========================================================================== | |
565 * Scan a literal or distance tree to determine the frequencies of the codes | |
566 * in the bit length tree. | |
567 */ | |
568 local void scan_tree (s, tree, max_code) | |
569 deflate_state *s; | |
570 ct_data *tree; /* the tree to be scanned */ | |
571 int max_code; /* and its largest code of non zero frequency */ | |
572 { | |
573 int n; /* iterates over all tree elements */ | |
574 int prevlen = -1; /* last emitted length */ | |
575 int curlen; /* length of current code */ | |
576 int nextlen = tree[0].Len; /* length of next code */ | |
577 int count = 0; /* repeat count of the current code */ | |
578 int max_count = 7; /* max repeat count */ | |
579 int min_count = 4; /* min repeat count */ | |
580 | |
581 if (nextlen == 0) max_count = 138, min_count = 3; | |
582 tree[max_code+1].Len = (ush)0xffff; /* guard */ | |
583 | |
584 for (n = 0; n <= max_code; n++) { | |
585 curlen = nextlen; nextlen = tree[n+1].Len; | |
586 if (++count < max_count && curlen == nextlen) { | |
587 continue; | |
588 } else if (count < min_count) { | |
589 s->bl_tree[curlen].Freq += count; | |
590 } else if (curlen != 0) { | |
591 if (curlen != prevlen) s->bl_tree[curlen].Freq++; | |
592 s->bl_tree[REP_3_6].Freq++; | |
593 } else if (count <= 10) { | |
594 s->bl_tree[REPZ_3_10].Freq++; | |
595 } else { | |
596 s->bl_tree[REPZ_11_138].Freq++; | |
597 } | |
598 count = 0; prevlen = curlen; | |
599 if (nextlen == 0) { | |
600 max_count = 138, min_count = 3; | |
601 } else if (curlen == nextlen) { | |
602 max_count = 6, min_count = 3; | |
603 } else { | |
604 max_count = 7, min_count = 4; | |
605 } | |
606 } | |
607 } | |
608 | |
609 /* =========================================================================== | |
610 * Send a literal or distance tree in compressed form, using the codes in | |
611 * bl_tree. | |
612 */ | |
613 local void send_tree (s, tree, max_code) | |
614 deflate_state *s; | |
615 ct_data *tree; /* the tree to be scanned */ | |
616 int max_code; /* and its largest code of non zero frequency */ | |
617 { | |
618 int n; /* iterates over all tree elements */ | |
619 int prevlen = -1; /* last emitted length */ | |
620 int curlen; /* length of current code */ | |
621 int nextlen = tree[0].Len; /* length of next code */ | |
622 int count = 0; /* repeat count of the current code */ | |
623 int max_count = 7; /* max repeat count */ | |
624 int min_count = 4; /* min repeat count */ | |
625 | |
626 /* tree[max_code+1].Len = -1; */ /* guard already set */ | |
627 if (nextlen == 0) max_count = 138, min_count = 3; | |
628 | |
629 for (n = 0; n <= max_code; n++) { | |
630 curlen = nextlen; nextlen = tree[n+1].Len; | |
631 if (++count < max_count && curlen == nextlen) { | |
632 continue; | |
633 } else if (count < min_count) { | |
634 do { send_code(s, curlen, s->bl_tree); } while (--count != 0); | |
635 | |
636 } else if (curlen != 0) { | |
637 if (curlen != prevlen) { | |
638 send_code(s, curlen, s->bl_tree); count--; | |
639 } | |
640 Assert(count >= 3 && count <= 6, " 3_6?"); | |
641 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2); | |
642 | |
643 } else if (count <= 10) { | |
644 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3); | |
645 | |
646 } else { | |
647 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7); | |
648 } | |
649 count = 0; prevlen = curlen; | |
650 if (nextlen == 0) { | |
651 max_count = 138, min_count = 3; | |
652 } else if (curlen == nextlen) { | |
653 max_count = 6, min_count = 3; | |
654 } else { | |
655 max_count = 7, min_count = 4; | |
656 } | |
657 } | |
658 } | |
659 | |
660 /* =========================================================================== | |
661 * Construct the Huffman tree for the bit lengths and return the index in | |
662 * bl_order of the last bit length code to send. | |
663 */ | |
664 local int build_bl_tree(s) | |
665 deflate_state *s; | |
666 { | |
667 int max_blindex; /* index of last bit length code of non zero freq */ | |
668 | |
669 /* Determine the bit length frequencies for literal and distance trees */ | |
670 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); | |
671 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); | |
672 | |
673 /* Build the bit length tree: */ | |
674 build_tree(s, (tree_desc *)(&(s->bl_desc))); | |
675 /* opt_len now includes the length of the tree representations, except | |
676 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. | |
677 */ | |
678 | |
679 /* Determine the number of bit length codes to send. The pkzip format | |
680 * requires that at least 4 bit length codes be sent. (appnote.txt says | |
681 * 3 but the actual value used is 4.) | |
682 */ | |
683 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { | |
684 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; | |
685 } | |
686 /* Update opt_len to include the bit length tree and counts */ | |
687 s->opt_len += 3*(max_blindex+1) + 5+5+4; | |
688 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", | |
689 s->opt_len, s->static_len)); | |
690 | |
691 return max_blindex; | |
692 } | |
693 | |
694 /* =========================================================================== | |
695 * Send the header for a block using dynamic Huffman trees: the counts, the | |
696 * lengths of the bit length codes, the literal tree and the distance tree. | |
697 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. | |
698 */ | |
699 local void send_all_trees(s, lcodes, dcodes, blcodes) | |
700 deflate_state *s; | |
701 int lcodes, dcodes, blcodes; /* number of codes for each tree */ | |
702 { | |
703 int rank; /* index in bl_order */ | |
704 | |
705 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); | |
706 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, | |
707 "too many codes"); | |
708 Tracev((stderr, "\nbl counts: ")); | |
709 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */ | |
710 send_bits(s, dcodes-1, 5); | |
711 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */ | |
712 for (rank = 0; rank < blcodes; rank++) { | |
713 Tracev((stderr, "\nbl code %2d ", bl_order[rank])); | |
714 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); | |
715 } | |
716 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); | |
717 | |
718 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */ | |
719 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); | |
720 | |
721 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */ | |
722 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); | |
723 } | |
724 | |
725 /* =========================================================================== | |
726 * Send a stored block | |
727 */ | |
728 void ct_stored_block(s, buf, stored_len, eof) | |
729 deflate_state *s; | |
730 char *buf; /* input block */ | |
731 ulg stored_len; /* length of input block */ | |
732 int eof; /* true if this is the last block for a file */ | |
733 { | |
734 send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */ | |
735 s->compressed_len = (s->compressed_len + 3 + 7) & ~7L; | |
736 s->compressed_len += (stored_len + 4) << 3; | |
737 | |
738 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */ | |
739 } | |
740 | |
741 /* =========================================================================== | |
742 * Determine the best encoding for the current block: dynamic trees, static | |
743 * trees or store, and output the encoded block to the zip file. This function | |
744 * returns the total compressed length for the file so far. | |
745 */ | |
746 ulg ct_flush_block(s, buf, stored_len, eof) | |
747 deflate_state *s; | |
748 char *buf; /* input block, or NULL if too old */ | |
749 ulg stored_len; /* length of input block */ | |
750 int eof; /* true if this is the last block for a file */ | |
751 { | |
752 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ | |
753 int max_blindex; /* index of last bit length code of non zero freq */ | |
754 | |
755 /* Check if the file is ascii or binary */ | |
756 if (s->data_type == UNKNOWN) set_data_type(s); | |
757 | |
758 /* Construct the literal and distance trees */ | |
759 build_tree(s, (tree_desc *)(&(s->l_desc))); | |
760 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, | |
761 s->static_len)); | |
762 | |
763 build_tree(s, (tree_desc *)(&(s->d_desc))); | |
764 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, | |
765 s->static_len)); | |
766 /* At this point, opt_len and static_len are the total bit lengths of | |
767 * the compressed block data, excluding the tree representations. | |
768 */ | |
769 | |
770 /* Build the bit length tree for the above two trees, and get the index | |
771 * in bl_order of the last bit length code to send. | |
772 */ | |
773 max_blindex = build_bl_tree(s); | |
774 | |
775 /* Determine the best encoding. Compute first the block length in bytes */ | |
776 opt_lenb = (s->opt_len+3+7)>>3; | |
777 static_lenb = (s->static_len+3+7)>>3; | |
778 | |
779 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", | |
780 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, | |
781 s->last_lit)); | |
782 | |
783 if (static_lenb <= opt_lenb) opt_lenb = static_lenb; | |
784 | |
785 /* If compression failed and this is the first and last block, | |
786 * and if the .zip file can be seeked (to rewrite the local header), | |
787 * the whole file is transformed into a stored file: | |
788 */ | |
789 #ifdef STORED_FILE_OK | |
790 # ifdef FORCE_STORED_FILE | |
791 if (eof && compressed_len == 0L) { /* force stored file */ | |
792 # else | |
793 if (stored_len <= opt_lenb && eof && s->compressed_len==0L && seekable()) { | |
794 # endif | |
795 /* Since LIT_BUFSIZE <= 2*WSIZE, the input data must be there: */ | |
796 if (buf == (char*)0) error ("block vanished"); | |
797 | |
798 copy_block(buf, (unsigned)stored_len, 0); /* without header */ | |
799 s->compressed_len = stored_len << 3; | |
800 s->method = STORED; | |
801 } else | |
802 #endif /* STORED_FILE_OK */ | |
803 | |
804 #ifdef FORCE_STORED | |
805 if (buf != (char*)0) { /* force stored block */ | |
806 #else | |
807 if (stored_len+4 <= opt_lenb && buf != (char*)0) { | |
808 /* 4: two words for the lengths */ | |
809 #endif | |
810 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. | |
811 * Otherwise we can't have processed more than WSIZE input bytes since | |
812 * the last block flush, because compression would have been | |
813 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to | |
814 * transform a block into a stored block. | |
815 */ | |
816 ct_stored_block(s, buf, stored_len, eof); | |
817 | |
818 #ifdef FORCE_STATIC | |
819 } else if (static_lenb >= 0) { /* force static trees */ | |
820 #else | |
821 } else if (static_lenb == opt_lenb) { | |
822 #endif | |
823 send_bits(s, (STATIC_TREES<<1)+eof, 3); | |
824 compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree); | |
825 s->compressed_len += 3 + s->static_len; | |
826 } else { | |
827 send_bits(s, (DYN_TREES<<1)+eof, 3); | |
828 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1, | |
829 max_blindex+1); | |
830 compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree); | |
831 s->compressed_len += 3 + s->opt_len; | |
832 } | |
833 Assert (s->compressed_len == s->bits_sent, "bad compressed size"); | |
834 init_block(s); | |
835 | |
836 if (eof) { | |
837 bi_windup(s); | |
838 s->compressed_len += 7; /* align on byte boundary */ | |
839 } | |
840 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3, | |
841 s->compressed_len-7*eof)); | |
842 | |
843 return s->compressed_len >> 3; | |
844 } | |
845 | |
846 /* =========================================================================== | |
847 * Save the match info and tally the frequency counts. Return true if | |
848 * the current block must be flushed. | |
849 */ | |
850 int ct_tally (s, dist, lc) | |
851 deflate_state *s; | |
852 int dist; /* distance of matched string */ | |
853 int lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */ | |
854 { | |
855 s->d_buf[s->last_lit] = (ush)dist; | |
856 s->l_buf[s->last_lit++] = (uch)lc; | |
857 if (dist == 0) { | |
858 /* lc is the unmatched char */ | |
859 s->dyn_ltree[lc].Freq++; | |
860 } else { | |
861 s->matches++; | |
862 /* Here, lc is the match length - MIN_MATCH */ | |
863 dist--; /* dist = match distance - 1 */ | |
864 Assert((ush)dist < (ush)MAX_DIST(s) && | |
865 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && | |
866 (ush)d_code(dist) < (ush)D_CODES, "ct_tally: bad match"); | |
867 | |
868 s->dyn_ltree[length_code[lc]+LITERALS+1].Freq++; | |
869 s->dyn_dtree[d_code(dist)].Freq++; | |
870 } | |
871 | |
872 /* Try to guess if it is profitable to stop the current block here */ | |
873 if (s->level > 2 && (s->last_lit & 0xfff) == 0) { | |
874 /* Compute an upper bound for the compressed length */ | |
875 ulg out_length = (ulg)s->last_lit*8L; | |
876 ulg in_length = (ulg)s->strstart - s->block_start; | |
877 int dcode; | |
878 for (dcode = 0; dcode < D_CODES; dcode++) { | |
879 out_length += (ulg)s->dyn_dtree[dcode].Freq * | |
880 (5L+extra_dbits[dcode]); | |
881 } | |
882 out_length >>= 3; | |
883 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ", | |
884 s->last_lit, in_length, out_length, | |
885 100L - out_length*100L/in_length)); | |
886 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1; | |
887 } | |
888 return (s->last_lit == s->lit_bufsize-1); | |
889 /* We avoid equality with lit_bufsize because of wraparound at 64K | |
890 * on 16 bit machines and because stored blocks are restricted to | |
891 * 64K-1 bytes. | |
892 */ | |
893 } | |
894 | |
895 /* =========================================================================== | |
896 * Send the block data compressed using the given Huffman trees | |
897 */ | |
898 local void compress_block(s, ltree, dtree) | |
899 deflate_state *s; | |
900 ct_data *ltree; /* literal tree */ | |
901 ct_data *dtree; /* distance tree */ | |
902 { | |
903 unsigned dist; /* distance of matched string */ | |
904 int lc; /* match length or unmatched char (if dist == 0) */ | |
905 unsigned lx = 0; /* running index in l_buf */ | |
906 unsigned code; /* the code to send */ | |
907 int extra; /* number of extra bits to send */ | |
908 | |
909 if (s->last_lit != 0) do { | |
910 dist = s->d_buf[lx]; | |
911 lc = s->l_buf[lx++]; | |
912 if (dist == 0) { | |
913 send_code(s, lc, ltree); /* send a literal byte */ | |
914 Tracecv(isgraph(lc), (stderr," '%c' ", lc)); | |
915 } else { | |
916 /* Here, lc is the match length - MIN_MATCH */ | |
917 code = length_code[lc]; | |
918 send_code(s, code+LITERALS+1, ltree); /* send the length code */ | |
919 extra = extra_lbits[code]; | |
920 if (extra != 0) { | |
921 lc -= base_length[code]; | |
922 send_bits(s, lc, extra); /* send the extra length bits */ | |
923 } | |
924 dist--; /* dist is now the match distance - 1 */ | |
925 code = d_code(dist); | |
926 Assert (code < D_CODES, "bad d_code"); | |
927 | |
928 send_code(s, code, dtree); /* send the distance code */ | |
929 extra = extra_dbits[code]; | |
930 if (extra != 0) { | |
931 dist -= base_dist[code]; | |
932 send_bits(s, dist, extra); /* send the extra distance bits */ | |
933 } | |
934 } /* literal or match pair ? */ | |
935 | |
936 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */ | |
937 Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow"); | |
938 | |
939 } while (lx < s->last_lit); | |
940 | |
941 send_code(s, END_BLOCK, ltree); | |
942 } | |
943 | |
944 /* =========================================================================== | |
945 * Set the data type to ASCII or BINARY, using a crude approximation: | |
946 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise. | |
947 * IN assertion: the fields freq of dyn_ltree are set and the total of all | |
948 * frequencies does not exceed 64K (to fit in an int on 16 bit machines). | |
949 */ | |
950 local void set_data_type(s) | |
951 deflate_state *s; | |
952 { | |
953 int n = 0; | |
954 unsigned ascii_freq = 0; | |
955 unsigned bin_freq = 0; | |
956 while (n < 7) bin_freq += s->dyn_ltree[n++].Freq; | |
957 while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq; | |
958 while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq; | |
959 s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? BINARY : ASCII); | |
960 } | |
961 | |
962 /* =========================================================================== | |
963 * Output a short LSB first on the stream. | |
964 * IN assertion: there is enough room in pendingBuf. | |
965 */ | |
966 #define put_short(s, w) { \ | |
967 put_byte(s, (uch)((w) & 0xff)); \ | |
968 put_byte(s, (uch)((ush)(w) >> 8)); \ | |
969 } | |
970 | |
971 /* =========================================================================== | |
972 * Send a value on a given number of bits. | |
973 * IN assertion: length <= 16 and value fits in length bits. | |
974 */ | |
975 local void send_bits(s, value, length) | |
976 deflate_state *s; | |
977 int value; /* value to send */ | |
978 int length; /* number of bits */ | |
979 { | |
980 #ifdef DEBUG | |
981 Tracev((stderr," l %2d v %4x ", length, value)); | |
982 Assert(length > 0 && length <= 15, "invalid length"); | |
983 s->bits_sent += (ulg)length; | |
984 #endif | |
985 /* If not enough room in bi_buf, use (valid) bits from bi_buf and | |
986 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) | |
987 * unused bits in value. | |
988 */ | |
989 if (s->bi_valid > (int)Buf_size - length) { | |
990 s->bi_buf |= (value << s->bi_valid); | |
991 put_short(s, s->bi_buf); | |
992 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); | |
993 s->bi_valid += length - Buf_size; | |
994 } else { | |
995 s->bi_buf |= value << s->bi_valid; | |
996 s->bi_valid += length; | |
997 } | |
998 } | |
999 | |
1000 /* =========================================================================== | |
1001 * Reverse the first len bits of a code, using straightforward code (a faster | |
1002 * method would use a table) | |
1003 * IN assertion: 1 <= len <= 15 | |
1004 */ | |
1005 local unsigned bi_reverse(code, len) | |
1006 unsigned code; /* the value to invert */ | |
1007 int len; /* its bit length */ | |
1008 { | |
1009 register unsigned res = 0; | |
1010 do { | |
1011 res |= code & 1; | |
1012 code >>= 1, res <<= 1; | |
1013 } while (--len > 0); | |
1014 return res >> 1; | |
1015 } | |
1016 | |
1017 /* =========================================================================== | |
1018 * Write out any remaining bits in an incomplete byte. | |
1019 */ | |
1020 local void bi_windup(s) | |
1021 deflate_state *s; | |
1022 { | |
1023 if (s->bi_valid > 8) { | |
1024 put_short(s, s->bi_buf); | |
1025 } else if (s->bi_valid > 0) { | |
1026 put_byte(s, (Byte)s->bi_buf); | |
1027 } | |
1028 s->bi_buf = 0; | |
1029 s->bi_valid = 0; | |
1030 #ifdef DEBUG | |
1031 s->bits_sent = (s->bits_sent+7) & ~7; | |
1032 #endif | |
1033 } | |
1034 | |
1035 /* =========================================================================== | |
1036 * Copy a stored block, storing first the length and its | |
1037 * one's complement if requested. | |
1038 */ | |
1039 local void copy_block(s, buf, len, header) | |
1040 deflate_state *s; | |
1041 char *buf; /* the input data */ | |
1042 unsigned len; /* its length */ | |
1043 int header; /* true if block header must be written */ | |
1044 { | |
1045 bi_windup(s); /* align on byte boundary */ | |
1046 | |
1047 if (header) { | |
1048 put_short(s, (ush)len); | |
1049 put_short(s, (ush)~len); | |
1050 #ifdef DEBUG | |
1051 s->bits_sent += 2*16; | |
1052 #endif | |
1053 } | |
1054 #ifdef DEBUG | |
1055 s->bits_sent += (ulg)len<<3; | |
1056 #endif | |
1057 while (len--) { | |
1058 put_byte(s, *buf++); | |
1059 } | |
1060 } |