4
|
1 /*--------------------------------------------------------------------------
|
|
2 NETREK II -- Paradise
|
|
3
|
|
4 Permission to use, copy, modify, and distribute this software and its
|
|
5 documentation, or any derivative works thereof, for any NON-COMMERCIAL
|
|
6 purpose and without fee is hereby granted, provided that this copyright
|
|
7 notice appear in all copies. No representations are made about the
|
|
8 suitability of this software for any purpose. This software is provided
|
|
9 "as is" without express or implied warranty.
|
|
10
|
|
11 Xtrek Copyright 1986 Chris Guthrie
|
|
12 Netrek (Xtrek II) Copyright 1989 Kevin P. Smith
|
|
13 Scott Silvey
|
|
14 Paradise II (Netrek II) Copyright 1993 Larry Denys
|
|
15 Kurt Olsen
|
|
16 Brandon Gillespie
|
|
17 --------------------------------------------------------------------------*/
|
|
18 #include "config.h"
|
|
19 #include <math.h>
|
|
20
|
|
21 #include "defs.h"
|
|
22 #include "struct.h"
|
|
23 #include "data.h"
|
|
24 #include "shmem.h"
|
|
25 #include "planets.h"
|
|
26
|
|
27 #define SYSWIDTH (GWIDTH/5) /* width of a system */
|
|
28
|
|
29 #define SYSTEMS 9 /* number of planetary systems */
|
|
30
|
|
31 /* atmosphere chances form a cascade win rand()%100 */
|
|
32 #define PATMOS1 40 /* chance for normal atmosphere */
|
|
33 #define PATMOS2 70 /* chance for thin atmosphere */
|
|
34 #define PATMOS3 90 /* chance for slightly toxic stmos */
|
|
35 #define PPOISON 100 /* chance for poison atmos */
|
|
36
|
|
37 /* defines that deal with planets resources and types */
|
|
38 #define NMETAL 2 /* number of metal deposits */
|
|
39 #define NDILYTH 10 /* number of dilythium deposits */
|
|
40 #define NARABLE 30 /* number of arable land planets */
|
|
41 /* defines that deal with star placement */
|
|
42
|
|
43 #define GW ((float)GWIDTH) /* size of galaxy in floating point */
|
|
44 #define STARBORD (SYSWIDTH/2)
|
|
45 #define STARMIN (GW/3.7)/* min dist between stars */
|
|
46 #define STARMIN2 STARMIN*STARMIN /* min star dist squared */
|
|
47
|
|
48 /* defines that deal with systems and their planets */
|
|
49 #define SYSMINP 4 /* min number of planets per system */
|
|
50 #define SYSADD 2 /* number possible above min number */
|
|
51 #define SYSBORD (5000.0 + (float)(GWIDTH/200)) /* min distance from
|
|
52 * border wall */
|
|
53 #define SYSMIN (7000.0 + (float)(GWIDTH/100)) /* min distance between
|
|
54 * objects */
|
|
55 #define SYSMIN2 (SYSMIN*SYSMIN) /* square of sysmin distance */
|
|
56 #define SYSPLMIN 5 /* min number of planets for system */
|
|
57 #define SYSPLADD 0 /* number of possible extra planets */
|
|
58 #define MINARMY 8 /* min numer of armies on a planet */
|
|
59 #define MAXARMY 15 /* max number of armies on a planet */
|
|
60
|
|
61 /* other defines */
|
|
62 #define HOMEARMIES 30 /* number of armies on home planets */
|
|
63 #define COLONYARMIES 10 /* number of armies for colony planet */
|
|
64
|
|
65
|
|
66 /* defines dealing with growth timers */
|
|
67 #define PLGFUEL configvals->plgrow.fuel /* time for growth of fuel
|
|
68 * depot */
|
|
69 #define PLGAGRI configvals->plgrow.agri /* time for growth of agri */
|
|
70 #define PLGREPAIR configvals->plgrow.repair /* time for growth of
|
|
71 * repair */
|
|
72 #define PLGSHIP configvals->plgrow.shipyard /* time for growth of
|
|
73 * shipyard */
|
|
74
|
|
75
|
|
76 #if 0
|
|
77 /*-------------------------------GENRESOURCES----------------------------*/
|
|
78 /*
|
|
79 * This function goes through the planets structure and determines what kind
|
|
80 * of atmosphere and what kind of surface the planets have. It generates the
|
|
81 * stars that will be used as system centers ans then places atmospheres on
|
|
82 * the other planets. It then distributes the resources on the planet
|
|
83 * surfaces.
|
|
84 */
|
|
85
|
|
86 static void
|
|
87 genresources()
|
|
88 {
|
|
89 int i; /* looping vars */
|
|
90 int t; /* temp var */
|
|
91
|
|
92 for (i = 0; i < SYSTEMS; i++) /* first planets are stars */
|
|
93 planets[i].pl_flags |= PLSTAR; /* or in star flag */
|
|
94 for (i = SYSTEMS; i < NUMPLANETS; i++)
|
|
95 { /* generate atmospheres */
|
|
96 t = lrand48() % 100; /* random # 0-99 */
|
|
97 if (t < PATMOS1) /* is it atmosphere type 1 */
|
|
98 planets[i].pl_flags |= PLATYPE1;
|
|
99 else if (t < PATMOS2) /* is it atmosphere type 2 */
|
|
100 planets[i].pl_flags |= PLATYPE2;
|
|
101 else if (t < PATMOS3) /* is it atmosphere type 3 */
|
|
102 planets[i].pl_flags |= PLATYPE3;
|
|
103 else if (t < PPOISON) /* is it poison atmosphere */
|
|
104 planets[i].pl_flags |= PLPOISON;
|
|
105 }
|
|
106 for (i = 0; i < NMETAL; i++)
|
|
107 { /* place the metal deposits */
|
|
108 t = lrand48() % (NUMPLANETS - SYSTEMS) + SYSTEMS; /* random planet */
|
|
109 planets[t].pl_flags |= PLMETAL; /* OR in the metal flag */
|
|
110 if (!configvals->resource_bombing)
|
|
111 planets[t].pl_flags |= PLREPAIR;
|
|
112 }
|
|
113 for (i = 0; i < NDILYTH; i++)
|
|
114 { /* place the metal deposits */
|
|
115 t = lrand48() % (NUMPLANETS - SYSTEMS) + SYSTEMS; /* random planet */
|
|
116 planets[t].pl_flags |= PLDILYTH; /* OR in the dilyth flag */
|
|
117 planets[t].pl_flags &= ~(PLATMASK | PLARABLE); /* zero off previous
|
|
118 * atmos */
|
|
119 planets[t].pl_flags |= PLPOISON; /* dilyth poisons atmosphere */
|
|
120 if (!configvals->resource_bombing)
|
|
121 planets[t].pl_flags |= PLFUEL;
|
|
122 }
|
|
123 for (i = 0; i < NARABLE; i++)
|
|
124 { /* place the metal deposits */
|
|
125 t = lrand48() % (NUMPLANETS - SYSTEMS) + SYSTEMS; /* random planet */
|
|
126 planets[t].pl_flags |= PLARABLE | PLATYPE1; /* OR in the arable flag */
|
|
127 if (!configvals->resource_bombing)
|
|
128 planets[t].pl_flags |= PLAGRI;
|
|
129 }
|
|
130 }
|
|
131 #endif
|
|
132
|
|
133
|
|
134 #if 0
|
|
135 /*--------------------------------PLACESTARS------------------------------*/
|
|
136 /*
|
|
137 * This function places each system's star. The stars are expected to be in
|
|
138 * the first SYSTEMS number of planets. The coordinates of the stars are
|
|
139 * placed in the space grid.
|
|
140 */
|
|
141
|
|
142 static int
|
|
143 placestars()
|
|
144 {
|
|
145 int i, j; /* looping vars */
|
|
146 double x, y; /* to hold star coordinates */
|
|
147 int done; /* flag to indicate done */
|
|
148 double dx, dy; /* delta x and y's */
|
|
149 int attempts;
|
|
150
|
|
151 for (i = 0; i < SYSTEMS; i++)
|
|
152 { /* star for each system */
|
|
153 x = drand48() * GW; /* pick intial coords */
|
|
154 y = drand48() * GW;
|
|
155 attempts = 0;
|
|
156 do
|
|
157 { /* do until location found */
|
|
158 attempts++;
|
|
159 done = 0; /* not done yet */
|
|
160 x = fmod(x + 3574.0, GW); /* offset coords a little */
|
|
161 y = fmod(y + 134.0, GW); /* every loop */
|
|
162 if ((x > GW - STARBORD) || (x < STARBORD)
|
|
163 || (y < STARBORD) || (y > GW - STARBORD))
|
|
164 continue; /* too close to border? */
|
|
165 done = 1; /* assume valid cord found */
|
|
166 for (j = 0; j < i; j++)
|
|
167 { /* go through previous stars */
|
|
168 dx = fabs(x - (double) planets[j].pl_x);
|
|
169 dy = fabs(y - (double) planets[j].pl_y);
|
|
170 if (dx * dx + dy * dy < STARMIN2) /* if too close then */
|
|
171 done = 0; /* we must get another coord */
|
|
172 }
|
|
173 } while (!done && attempts < 1000); /* do until location found */
|
|
174
|
|
175 if (!done)
|
|
176 return 0;
|
|
177
|
|
178 planets[i].pl_owner = NOBODY; /* no team owns a star */
|
|
179 planets[i].pl_flags |= PLSTAR; /* mark planet as a star */
|
|
180 move_planet(i, (int) x, (int) y, 0);
|
|
181 planets[i].pl_system = i + 1; /* mark the sytem number */
|
|
182 planets[i].pl_hinfo = ALLTEAM; /* all teams know its a star */
|
|
183 for (j = 0; j < MAXTEAM + 1; j++)
|
|
184 { /* go put in info for teams */
|
|
185 planets[i].pl_tinfo[j].owner = NOBODY; /* nobody owns it */
|
|
186 planets[i].pl_tinfo[j].armies = 0;
|
|
187 planets[i].pl_tinfo[j].flags = planets[i].pl_flags;
|
|
188 }
|
|
189 }
|
|
190 return 1;
|
|
191 }
|
|
192 #endif
|
|
193
|
|
194
|
|
195
|
|
196 /*-----------------------------PLACESYSTEMS------------------------------*/
|
|
197 /*
|
|
198 * This function places the planets in each star's system. The function will
|
|
199 * return the index of the first planet that was not placed in a system. The
|
|
200 * coordinates of the planets are placed in the space grid.
|
|
201 */
|
|
202
|
|
203 static int
|
|
204 placesystems()
|
|
205 {
|
|
206 int i, j, k; /* looping vars */
|
|
207 double x, y; /* to hold star coordinates */
|
|
208 int done; /* flag to indicate done */
|
|
209 double dx, dy; /* delta x and y's */
|
|
210 int n; /* number of planet to place */
|
|
211 int np; /* number of planets in system */
|
|
212 int attempts;
|
|
213
|
|
214 n = SYSTEMS; /* first planet to place */
|
|
215 for (i = 0; i < SYSTEMS; i++)
|
|
216 { /* planets for each system */
|
|
217 np = SYSPLMIN + lrand48() % (SYSPLADD + 1); /* how many planets */
|
|
218 for (k = 0; k < np; k++)
|
|
219 { /* go place the planets */
|
|
220 attempts = 0;
|
|
221 do
|
|
222 { /* do until location found */
|
|
223 attempts++;
|
|
224 done = 0; /* not done yet */
|
|
225 dx = (drand48() * SYSWIDTH - SYSWIDTH / 2.0);
|
|
226 dy = (drand48() * SYSWIDTH - SYSWIDTH / 2.0);
|
|
227 if (dx * dx + dy * dy > (SYSWIDTH / 2.0) * (SYSWIDTH / 2.0))
|
|
228 continue; /* might orbit its way out of the galaxy */
|
|
229 x = planets[i].pl_x + dx;
|
|
230 y = planets[i].pl_y + dy;
|
|
231 if ((x > GW - SYSBORD) || (x < SYSBORD)
|
|
232 || (y < SYSBORD) || (y > GW - SYSBORD))
|
|
233 continue; /* too close to border? */
|
|
234
|
|
235 done = 1; /* assume valid coord found */
|
|
236 for (j = 0; j < n; j++)
|
|
237 { /* go through previous planets */
|
|
238 dx = fabs(x - (double) planets[j].pl_x);
|
|
239 dy = fabs(y - (double) planets[j].pl_y);
|
|
240 if (dx * dx + dy * dy < SYSMIN2)
|
|
241 { /* if too close to another star */
|
|
242 done = 0; /* we must get another coord */
|
|
243 }
|
|
244 }
|
|
245 } while (!done && attempts < 100); /* do until location found */
|
|
246
|
|
247 if (!done)
|
|
248 return 0; /* universe too crowded, try again */
|
|
249
|
|
250 move_planet(n, (int) x, (int) y, 0);
|
|
251 planets[n].pl_system = i + 1; /* mark the sytem number */
|
|
252 planets[n].pl_armies = MINARMY + lrand48() % (MAXARMY - MINARMY);
|
|
253 n++; /* go to next planet */
|
|
254 }
|
|
255 }
|
|
256 return (n); /* return index of next planet */
|
|
257 }
|
|
258
|
|
259
|
|
260
|
|
261
|
|
262 /*-----------------------------PLACEINDEP------------------------------*/
|
|
263 /*
|
|
264 * This function places idependent planets that are not in a system. They can
|
|
265 * appear anywhere in the galaxy as long as they are not too close to another
|
|
266 * planet. The coords are put in the space grid.
|
|
267 */
|
|
268
|
|
269 static int
|
|
270 placeindep(n)
|
|
271 int n;
|
|
272 /* number of planet to start with */
|
|
273 {
|
|
274 int i, j; /* looping vars */
|
|
275 double x, y; /* to hold star coordinates */
|
|
276 int done; /* flag to indicate done */
|
|
277 double dx, dy; /* delta x and y's */
|
|
278 int attempts;
|
|
279
|
|
280 for (i = n; i < (NUMPLANETS - (WORMPAIRS * 2)); i++)
|
|
281 {
|
|
282 /* go through rest of planets */
|
|
283 x = drand48() * GW; /* pick intial coords */
|
|
284 y = drand48() * GW;
|
|
285 attempts = 0;
|
|
286 do
|
|
287 { /* do until location found */
|
|
288 attempts++;
|
|
289 done = 0; /* not done yet */
|
|
290 x = fmod(x + 3574.0, GW); /* offset coords a little */
|
|
291 y = fmod(y + 134.0, GW); /* every loop */
|
|
292 if ((x > GW - SYSBORD) || (x < SYSBORD)
|
|
293 || (y < SYSBORD) || (y > GW - SYSBORD))
|
|
294 continue; /* too close to border? */
|
|
295 done = 1; /* assume valid coord */
|
|
296 for (j = 0; j < n; j++)
|
|
297 { /* go through previous planets */
|
|
298 dx = fabs(x - (double) planets[j].pl_x);
|
|
299 dy = fabs(y - (double) planets[j].pl_y);
|
|
300 if (dx * dx + dy * dy < SYSMIN2)
|
|
301 { /* if planet to close */
|
|
302 done = 0; /* we must get another coord */
|
|
303 }
|
|
304 }
|
|
305 } while (!done && attempts < 100); /* do until location found */
|
|
306
|
|
307 if (!done)
|
|
308 return 0;
|
|
309
|
|
310 move_planet(n, (int) x, (int) y, 0);
|
|
311 planets[n].pl_system = 0; /* mark the no sytem */
|
|
312 planets[n].pl_armies = MINARMY + lrand48() % (MAXARMY - MINARMY);
|
|
313 n++; /* go to next planet */
|
|
314 }
|
|
315 for (i = n; i < NUMPLANETS; i++) /* now place wormholes */
|
|
316 {
|
|
317 x = drand48() * GW; /* pick intial coords */
|
|
318 y = drand48() * GW;
|
|
319 attempts = 0;
|
|
320 do
|
|
321 { /* do until location found */
|
|
322 attempts++;
|
|
323 done = 0; /* not done yet */
|
|
324 x = fmod(x + 3574.0, GW); /* offset coords a little */
|
|
325 y = fmod(y + 1034.0, GW); /* every loop */
|
|
326 #if 0
|
|
327 if ((x > GW) || (y > GW))
|
|
328 continue; /* too close to border? */
|
|
329 #endif
|
|
330 done = 1; /* assume valid coord */
|
|
331 for (j = 0; j < n; j++)
|
|
332 { /* go through previous planets */
|
|
333 dx = fabs(x - (double) planets[j].pl_x);
|
|
334 dy = fabs(y - (double) planets[j].pl_y);
|
|
335 if (dx * dx + dy * dy < SYSMIN2)
|
|
336 { /* if planet to close */
|
|
337 done = 0; /* we must get another coord */
|
|
338 }
|
|
339 }
|
|
340 } while (!done && attempts < 200); /* do until location found */
|
|
341
|
|
342 if (!done)
|
|
343 return 0;
|
|
344
|
|
345 move_planet(n, (int) x, (int) y, 0);
|
|
346 planets[n].pl_system = 0; /* mark the no system */
|
|
347 planets[n].pl_flags |= PLWHOLE; /* mark the planet as a wormhole */
|
|
348 /* the armies in a wormhole is the other wormhole's x coord */
|
|
349 /* the radius is the other wormhole's y coord */
|
|
350 if (NUMPLANETS % 2)
|
|
351 {
|
|
352 if (!(n % 2))
|
|
353 {
|
|
354 planets[n].pl_armies = planets[n - 1].pl_x;
|
|
355 planets[n].pl_radius = planets[n - 1].pl_y;
|
|
356 planets[n - 1].pl_armies = planets[n].pl_x;
|
|
357 planets[n - 1].pl_radius = planets[n].pl_y;
|
|
358 }
|
|
359 }
|
|
360 else
|
|
361 {
|
|
362 if (n % 2)
|
|
363 {
|
|
364 planets[n].pl_armies = planets[n - 1].pl_x;
|
|
365 planets[n].pl_radius = planets[n - 1].pl_y;
|
|
366 planets[n - 1].pl_armies = planets[n].pl_x;
|
|
367 planets[n - 1].pl_radius = planets[n].pl_y;
|
|
368 }
|
|
369 }
|
|
370 planets[i].pl_owner = NOBODY; /* no team owns a star */
|
|
371 planets[i].pl_hinfo = ALLTEAM; /* all teams know its a star */
|
|
372 for (j = 0; j < MAXTEAM + 1; j++)
|
|
373 { /* go put in info for teams */
|
|
374 planets[i].pl_tinfo[j].owner = NOBODY; /* nobody owns it */
|
|
375 planets[i].pl_tinfo[j].armies = 0;
|
|
376 planets[i].pl_tinfo[j].flags = planets[i].pl_flags;
|
|
377 }
|
|
378 n++; /* go to next planet */
|
|
379 }
|
|
380 return 1;
|
|
381 }
|
|
382
|
|
383
|
|
384
|
|
385
|
|
386 /*---------------------------------PLACERACES------------------------------*/
|
|
387 /*
|
|
388 * This function places the races in the galaxy. Each race is placed in a
|
|
389 * different system. The race is given a home world with an Agri and Ship-
|
|
390 * yard on it and HOMEARMIES. They are also given a conoly planet with
|
|
391 * dilythium deposits and COLONYARMIES on it.
|
|
392 */
|
|
393
|
|
394 static void
|
|
395 placeraces()
|
|
396 {
|
|
397 int i, j, k; /* looping vars */
|
|
398 int p; /* to hold planet for race */
|
|
399
|
|
400 for (i = 0; i < 4; i++)
|
|
401 { /* go through races */
|
|
402 /* find home planet */
|
|
403 p = lrand48() % NUMPLANETS; /* pick random planet */
|
|
404 while ((planets[p].pl_system != i + 1)
|
|
405 || (PL_TYPE(planets[p]) == PLSTAR)
|
|
406 || (planets[p].pl_owner != NOBODY))
|
|
407 p = (p + 1) % NUMPLANETS; /* go on to next planet */
|
|
408 planets[p].pl_flags &= ~PLSURMASK; /* make sure no dilithium */
|
|
409 planets[p].pl_flags |= (PLMETAL | PLARABLE); /* metal and arable */
|
|
410 planets[p].pl_flags |= PLATYPE1; /* good atmosphere */
|
|
411 planets[p].pl_flags |= (PLAGRI | PLSHIPYARD | PLREPAIR);
|
|
412 planets[p].pl_tagri = PLGAGRI; /* set timers for resources */
|
|
413 planets[p].pl_tshiprepair = PLGSHIP;
|
|
414 planets[p].pl_owner = 1 << i; /* make race the owner */
|
|
415 #if 0 /* home planets do not have traditional names */
|
|
416 strcpy(planets[p].pl_name, homenames[1 << i]); /* set name and length */
|
|
417 planets[p].pl_namelen = strlen(homenames[1 << i]);
|
|
418 #endif
|
|
419 planets[p].pl_armies = HOMEARMIES; /* set the armies */
|
|
420 planets[p].pl_hinfo = 1 << i; /* race has info on planet */
|
|
421 planets[p].pl_tinfo[1 << i].owner = 1 << i; /* know about owner */
|
|
422 planets[p].pl_tinfo[1 << i].armies = planets[p].pl_armies;
|
|
423 planets[p].pl_tinfo[1 << i].flags = planets[p].pl_flags;
|
|
424 /* find colony planet */
|
|
425 p = lrand48() % NUMPLANETS; /* pick random planet */
|
|
426 while ((planets[p].pl_system != i + 1)
|
|
427 || (PL_TYPE(planets[p]) == PLSTAR)
|
|
428 || (planets[p].pl_owner != NOBODY))
|
|
429 p = (p + 1) % NUMPLANETS; /* go on to next planet */
|
|
430 planets[p].pl_flags |= PLFUEL; /* make fuel depot */
|
|
431 planets[p].pl_tfuel = PLGFUEL; /* set timer for fuel depot */
|
|
432 planets[p].pl_flags &= ~PLATMASK; /* take off previous atmos */
|
|
433 planets[p].pl_flags |= PLPOISON; /* poison atmosphere */
|
|
434 planets[p].pl_flags |= PLDILYTH; /* dilythium deposits */
|
|
435 planets[p].pl_owner = 1 << i; /* make race the owner */
|
|
436 planets[p].pl_armies = COLONYARMIES; /* set the armies */
|
|
437 planets[p].pl_hinfo = 1 << i; /* race knows about */
|
|
438 planets[p].pl_tinfo[1 << i].owner = 1 << i; /* know about owner */
|
|
439 planets[p].pl_tinfo[1 << i].armies = planets[p].pl_armies;
|
|
440 planets[p].pl_tinfo[1 << i].flags = planets[p].pl_flags;
|
|
441 for (j = 0; j < NUMPLANETS; j++)
|
|
442 {
|
|
443 if ((planets[j].pl_system == i + 1) && (PL_TYPE(planets[j]) != PLSTAR))
|
|
444 {
|
|
445 #ifdef LEAGUE_SUPPORT
|
|
446 for (k = (status2->league ? 0 : i);
|
|
447 k < (status2->league ? 4 : i + 1);
|
|
448 k++)
|
|
449 #else
|
|
450 k = i;
|
|
451 #endif
|
|
452 {
|
|
453 planets[j].pl_owner = 1 << i;
|
|
454 planets[j].pl_hinfo =
|
|
455 #ifdef LEAGUE_SUPPORT
|
|
456 status2->league ? (1 << 4) - 1 :
|
|
457 #endif
|
|
458 (1 << i);
|
|
459 planets[j].pl_tinfo[1 << k].owner = 1 << i;
|
|
460 planets[j].pl_tinfo[1 << k].armies = planets[j].pl_armies;
|
|
461 planets[j].pl_tinfo[1 << k].flags = planets[j].pl_flags;
|
|
462 }
|
|
463 }
|
|
464 }
|
|
465 }
|
|
466 }
|
|
467
|
|
468 /*
|
|
469 * Generate a complete galaxy. This is the algorithm used by the paradise
|
|
470 * 2.01 server in its first release. I hope.
|
|
471 */
|
|
472
|
|
473 void
|
|
474 gen_galaxy_1()
|
|
475 {
|
|
476 int t;
|
|
477 while (1)
|
|
478 {
|
|
479 NUMPLANETS = 60;
|
|
480 GWIDTH = 200000;
|
|
481 initplanets(); /* initialize planet structures */
|
|
482
|
|
483 /* place the resources */
|
|
484 zero_plflags(planets, NUMPLANETS);
|
|
485 randomize_atmospheres(planets + SYSTEMS, NUMPLANETS - SYSTEMS,
|
|
486 PATMOS1, PATMOS2, PATMOS3, PPOISON);
|
|
487 randomize_resources(planets + SYSTEMS, NUMPLANETS - SYSTEMS,
|
|
488 NMETAL, NDILYTH, NARABLE);
|
|
489
|
|
490 /* place system centers */
|
|
491 if (!place_stars(planets, SYSTEMS,
|
|
492 (int) STARBORD, (int) STARMIN, (int) GW,
|
|
493 (struct planet *) 0, 0))
|
|
494 continue;
|
|
495
|
|
496 t = placesystems(); /* place planets in systems */
|
|
497 if (!t)
|
|
498 continue;
|
|
499
|
|
500 if (!placeindep(t)) /* place independent planets */
|
|
501 continue;
|
|
502
|
|
503 break; /* success */
|
|
504 }
|
|
505 if (configvals->justify_galaxy)
|
|
506 justify_galaxy(SYSTEMS);
|
|
507
|
|
508 placeraces(); /* place home planets for races */
|
|
509 }
|