Mercurial > ~darius > hgwebdir.cgi > paradise_client
comparison zlib/inftrees.c @ 3:5a977ccbc7a9 default tip
Empty changelog
author | darius |
---|---|
date | Sat, 06 Dec 1997 05:41:29 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
2:fba0b6e6cdc7 | 3:5a977ccbc7a9 |
---|---|
1 /* inftrees.c -- generate Huffman trees for efficient decoding | |
2 * Copyright (C) 1995 Mark Adler | |
3 * For conditions of distribution and use, see copyright notice in zlib.h | |
4 */ | |
5 | |
6 #include "zutil.h" | |
7 #include "inftrees.h" | |
8 | |
9 struct internal_state {int dummy;}; /* for buggy compilers */ | |
10 | |
11 /* simplify the use of the inflate_huft type with some defines */ | |
12 #define base more.Base | |
13 #define next more.Next | |
14 #define exop word.what.Exop | |
15 #define bits word.what.Bits | |
16 | |
17 | |
18 local int huft_build __P(( | |
19 uInt *, /* code lengths in bits */ | |
20 uInt, /* number of codes */ | |
21 uInt, /* number of "simple" codes */ | |
22 uInt *, /* list of base values for non-simple codes */ | |
23 uInt *, /* list of extra bits for non-simple codes */ | |
24 inflate_huft **, /* result: starting table */ | |
25 uInt *, /* maximum lookup bits (returns actual) */ | |
26 z_stream *)); /* for zalloc function */ | |
27 | |
28 local voidp falloc __P(( | |
29 voidp, /* opaque pointer (not used) */ | |
30 uInt, /* number of items */ | |
31 uInt)); /* size of item */ | |
32 | |
33 local void ffree __P(( | |
34 voidp q, /* opaque pointer (not used) */ | |
35 voidp p)); /* what to free (not used) */ | |
36 | |
37 /* Tables for deflate from PKZIP's appnote.txt. */ | |
38 local uInt cplens[] = { /* Copy lengths for literal codes 257..285 */ | |
39 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, | |
40 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; | |
41 /* actually lengths - 2; also see note #13 above about 258 */ | |
42 local uInt cplext[] = { /* Extra bits for literal codes 257..285 */ | |
43 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, | |
44 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 128, 128}; /* 128==invalid */ | |
45 local uInt cpdist[] = { /* Copy offsets for distance codes 0..29 */ | |
46 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, | |
47 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, | |
48 8193, 12289, 16385, 24577}; | |
49 local uInt cpdext[] = { /* Extra bits for distance codes */ | |
50 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, | |
51 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, | |
52 12, 12, 13, 13}; | |
53 | |
54 /* | |
55 Huffman code decoding is performed using a multi-level table lookup. | |
56 The fastest way to decode is to simply build a lookup table whose | |
57 size is determined by the longest code. However, the time it takes | |
58 to build this table can also be a factor if the data being decoded | |
59 is not very long. The most common codes are necessarily the | |
60 shortest codes, so those codes dominate the decoding time, and hence | |
61 the speed. The idea is you can have a shorter table that decodes the | |
62 shorter, more probable codes, and then point to subsidiary tables for | |
63 the longer codes. The time it costs to decode the longer codes is | |
64 then traded against the time it takes to make longer tables. | |
65 | |
66 This results of this trade are in the variables lbits and dbits | |
67 below. lbits is the number of bits the first level table for literal/ | |
68 length codes can decode in one step, and dbits is the same thing for | |
69 the distance codes. Subsequent tables are also less than or equal to | |
70 those sizes. These values may be adjusted either when all of the | |
71 codes are shorter than that, in which case the longest code length in | |
72 bits is used, or when the shortest code is *longer* than the requested | |
73 table size, in which case the length of the shortest code in bits is | |
74 used. | |
75 | |
76 There are two different values for the two tables, since they code a | |
77 different number of possibilities each. The literal/length table | |
78 codes 286 possible values, or in a flat code, a little over eight | |
79 bits. The distance table codes 30 possible values, or a little less | |
80 than five bits, flat. The optimum values for speed end up being | |
81 about one bit more than those, so lbits is 8+1 and dbits is 5+1. | |
82 The optimum values may differ though from machine to machine, and | |
83 possibly even between compilers. Your mileage may vary. | |
84 */ | |
85 | |
86 | |
87 /* If BMAX needs to be larger than 16, then h and x[] should be uLong. */ | |
88 #define BMAX 15 /* maximum bit length of any code */ | |
89 #define N_MAX 288 /* maximum number of codes in any set */ | |
90 | |
91 #ifdef DEBUG | |
92 uInt inflate_hufts; | |
93 #endif | |
94 | |
95 local int huft_build(b, n, s, d, e, t, m, zs) | |
96 uInt *b; /* code lengths in bits (all assumed <= BMAX) */ | |
97 uInt n; /* number of codes (assumed <= N_MAX) */ | |
98 uInt s; /* number of simple-valued codes (0..s-1) */ | |
99 uInt *d; /* list of base values for non-simple codes */ | |
100 uInt *e; /* list of extra bits for non-simple codes */ | |
101 inflate_huft **t; /* result: starting table */ | |
102 uInt *m; /* maximum lookup bits, returns actual */ | |
103 z_stream *zs; /* for zalloc function */ | |
104 /* Given a list of code lengths and a maximum table size, make a set of | |
105 tables to decode that set of codes. Return Z_OK on success, Z_BUF_ERROR | |
106 if the given code set is incomplete (the tables are still built in this | |
107 case), Z_DATA_ERROR if the input is invalid (all zero length codes or an | |
108 over-subscribed set of lengths), or Z_MEM_ERROR if not enough memory. */ | |
109 { | |
110 uInt a; /* counter for codes of length k */ | |
111 uInt c[BMAX+1]; /* bit length count table */ | |
112 uInt f; /* i repeats in table every f entries */ | |
113 int g; /* maximum code length */ | |
114 int h; /* table level */ | |
115 register uInt i; /* counter, current code */ | |
116 register uInt j; /* counter */ | |
117 register int k; /* number of bits in current code */ | |
118 int l; /* bits per table (returned in m) */ | |
119 register uInt *p; /* pointer into c[], b[], or v[] */ | |
120 register inflate_huft *q; /* points to current table */ | |
121 inflate_huft r; /* table entry for structure assignment */ | |
122 inflate_huft *u[BMAX]; /* table stack */ | |
123 uInt v[N_MAX]; /* values in order of bit length */ | |
124 register int w; /* bits before this table == (l * h) */ | |
125 uInt x[BMAX+1]; /* bit offsets, then code stack */ | |
126 uInt *xp; /* pointer into x */ | |
127 int y; /* number of dummy codes added */ | |
128 uInt z; /* number of entries in current table */ | |
129 | |
130 | |
131 /* Generate counts for each bit length */ | |
132 p = c; | |
133 #define C0 *p++ = 0; | |
134 #define C2 C0 C0 C0 C0 | |
135 #define C4 C2 C2 C2 C2 | |
136 C4 /* clear c[]--assume BMAX+1 is 16 */ | |
137 p = b; i = n; | |
138 do { | |
139 c[*p++]++; /* assume all entries <= BMAX */ | |
140 } while (--i); | |
141 if (c[0] == n) /* null input--all zero length codes */ | |
142 { | |
143 *t = (inflate_huft *)Z_NULL; | |
144 *m = 0; | |
145 return Z_OK; | |
146 } | |
147 | |
148 | |
149 /* Find minimum and maximum length, bound *m by those */ | |
150 l = *m; | |
151 for (j = 1; j <= BMAX; j++) | |
152 if (c[j]) | |
153 break; | |
154 k = j; /* minimum code length */ | |
155 if ((uInt)l < j) | |
156 l = j; | |
157 for (i = BMAX; i; i--) | |
158 if (c[i]) | |
159 break; | |
160 g = i; /* maximum code length */ | |
161 if ((uInt)l > i) | |
162 l = i; | |
163 *m = l; | |
164 | |
165 | |
166 /* Adjust last length count to fill out codes, if needed */ | |
167 for (y = 1 << j; j < i; j++, y <<= 1) | |
168 if ((y -= c[j]) < 0) | |
169 return Z_DATA_ERROR; | |
170 if ((y -= c[i]) < 0) | |
171 return Z_DATA_ERROR; | |
172 c[i] += y; | |
173 | |
174 | |
175 /* Generate starting offsets into the value table for each length */ | |
176 x[1] = j = 0; | |
177 p = c + 1; xp = x + 2; | |
178 while (--i) { /* note that i == g from above */ | |
179 *xp++ = (j += *p++); | |
180 } | |
181 | |
182 | |
183 /* Make a table of values in order of bit lengths */ | |
184 p = b; i = 0; | |
185 do { | |
186 if ((j = *p++) != 0) | |
187 v[x[j]++] = i; | |
188 } while (++i < n); | |
189 | |
190 | |
191 /* Generate the Huffman codes and for each, make the table entries */ | |
192 x[0] = i = 0; /* first Huffman code is zero */ | |
193 p = v; /* grab values in bit order */ | |
194 h = -1; /* no tables yet--level -1 */ | |
195 w = -l; /* bits decoded == (l * h) */ | |
196 u[0] = (inflate_huft *)Z_NULL; /* just to keep compilers happy */ | |
197 q = (inflate_huft *)Z_NULL; /* ditto */ | |
198 z = 0; /* ditto */ | |
199 | |
200 /* go through the bit lengths (k already is bits in shortest code) */ | |
201 for (; k <= g; k++) | |
202 { | |
203 a = c[k]; | |
204 while (a--) | |
205 { | |
206 /* here i is the Huffman code of length k bits for value *p */ | |
207 /* make tables up to required level */ | |
208 while (k > w + l) | |
209 { | |
210 h++; | |
211 w += l; /* previous table always l bits */ | |
212 | |
213 /* compute minimum size table less than or equal to l bits */ | |
214 z = (z = g - w) > (uInt)l ? l : z; /* table size upper limit */ | |
215 if ((f = 1 << (j = k - w)) > a + 1) /* try a k-w bit table */ | |
216 { /* too few codes for k-w bit table */ | |
217 f -= a + 1; /* deduct codes from patterns left */ | |
218 xp = c + k; | |
219 if (j < z) | |
220 while (++j < z) /* try smaller tables up to z bits */ | |
221 { | |
222 if ((f <<= 1) <= *++xp) | |
223 break; /* enough codes to use up j bits */ | |
224 f -= *xp; /* else deduct codes from patterns */ | |
225 } | |
226 } | |
227 z = 1 << j; /* table entries for j-bit table */ | |
228 | |
229 /* allocate and link in new table */ | |
230 if ((q = (inflate_huft *)ZALLOC | |
231 (zs,z + 1,sizeof(inflate_huft))) == Z_NULL) | |
232 { | |
233 if (h) | |
234 inflate_trees_free(u[0], zs); | |
235 return Z_MEM_ERROR; /* not enough memory */ | |
236 } | |
237 #ifdef DEBUG | |
238 inflate_hufts += z + 1; | |
239 #endif | |
240 *t = q + 1; /* link to list for huft_free() */ | |
241 *(t = &(q->next)) = (inflate_huft *)Z_NULL; | |
242 u[h] = ++q; /* table starts after link */ | |
243 | |
244 /* connect to last table, if there is one */ | |
245 if (h) | |
246 { | |
247 x[h] = i; /* save pattern for backing up */ | |
248 r.bits = (Byte)l; /* bits to dump before this table */ | |
249 r.exop = -(Char)j; /* bits in this table */ | |
250 r.next = q; /* pointer to this table */ | |
251 j = i >> (w - l); /* (get around Turbo C bug) */ | |
252 u[h-1][j] = r; /* connect to last table */ | |
253 } | |
254 } | |
255 | |
256 /* set up table entry in r */ | |
257 r.bits = (Byte)(k - w); | |
258 if (p >= v + n) | |
259 r.exop = (Char)(-128); /* out of values--invalid code */ | |
260 else if (*p < s) | |
261 { | |
262 r.exop = (Char)(*p < 256 ? 16 : -64); /* 256 is end-of-block code */ | |
263 r.base = *p++; /* simple code is just the value */ | |
264 } | |
265 else | |
266 { | |
267 r.exop = (Char)e[*p - s]; /* non-simple--look up in lists */ | |
268 r.base = d[*p++ - s]; | |
269 } | |
270 | |
271 /* fill code-like entries with r */ | |
272 f = 1 << (k - w); | |
273 for (j = i >> w; j < z; j += f) | |
274 q[j] = r; | |
275 | |
276 /* backwards increment the k-bit code i */ | |
277 for (j = 1 << (k - 1); i & j; j >>= 1) | |
278 i ^= j; | |
279 i ^= j; | |
280 | |
281 /* backup over finished tables */ | |
282 while ((i & ((1 << w) - 1)) != x[h]) | |
283 { | |
284 h--; /* don't need to update q */ | |
285 w -= l; | |
286 } | |
287 } | |
288 } | |
289 | |
290 | |
291 /* Return Z_BUF_ERROR if we were given an incomplete table */ | |
292 return y != 0 && g != 1 ? Z_BUF_ERROR : Z_OK; | |
293 } | |
294 | |
295 | |
296 int inflate_trees_bits(c, bb, tb, z) | |
297 uInt *c; /* 19 code lengths */ | |
298 uInt *bb; /* bits tree desired/actual depth */ | |
299 inflate_huft **tb; /* bits tree result */ | |
300 z_stream *z; /* for zfree function */ | |
301 { | |
302 int r; | |
303 | |
304 r = huft_build(c, 19, 19, (uInt*)Z_NULL, (uInt*)Z_NULL, tb, bb, z); | |
305 if (r == Z_DATA_ERROR) | |
306 z->msg = "oversubscribed dynamic bit lengths tree"; | |
307 else if (r == Z_BUF_ERROR) | |
308 { | |
309 inflate_trees_free(*tb, z); | |
310 z->msg = "incomplete dynamic bit lengths tree"; | |
311 r = Z_DATA_ERROR; | |
312 } | |
313 return r; | |
314 } | |
315 | |
316 | |
317 int inflate_trees_dynamic(nl, nd, c, bl, bd, tl, td, z) | |
318 uInt nl; /* number of literal/length codes */ | |
319 uInt nd; /* number of distance codes */ | |
320 uInt *c; /* that many (total) code lengths */ | |
321 uInt *bl; /* literal desired/actual bit depth */ | |
322 uInt *bd; /* distance desired/actual bit depth */ | |
323 inflate_huft **tl; /* literal/length tree result */ | |
324 inflate_huft **td; /* distance tree result */ | |
325 z_stream *z; /* for zfree function */ | |
326 { | |
327 int r; | |
328 | |
329 /* build literal/length tree */ | |
330 if ((r = huft_build(c, nl, 257, cplens, cplext, tl, bl, z)) != Z_OK) | |
331 { | |
332 if (r == Z_DATA_ERROR) | |
333 z->msg = "oversubscribed literal/length tree"; | |
334 else if (r == Z_BUF_ERROR) | |
335 { | |
336 inflate_trees_free(*tl, z); | |
337 z->msg = "incomplete literal/length tree"; | |
338 r = Z_DATA_ERROR; | |
339 } | |
340 return r; | |
341 } | |
342 | |
343 /* build distance tree */ | |
344 if ((r = huft_build(c + nl, nd, 0, cpdist, cpdext, td, bd, z)) != Z_OK) | |
345 { | |
346 if (r == Z_DATA_ERROR) | |
347 z->msg = "oversubscribed literal/length tree"; | |
348 else if (r == Z_BUF_ERROR) { | |
349 #ifdef PKZIP_BUG_WORKAROUND | |
350 r = Z_OK; | |
351 } | |
352 #else | |
353 inflate_trees_free(*td, z); | |
354 z->msg = "incomplete literal/length tree"; | |
355 r = Z_DATA_ERROR; | |
356 } | |
357 inflate_trees_free(*tl, z); | |
358 return r; | |
359 #endif | |
360 } | |
361 | |
362 /* done */ | |
363 return Z_OK; | |
364 } | |
365 | |
366 | |
367 /* build fixed tables only once--keep them here */ | |
368 local int fixed_lock = 0; | |
369 local int fixed_built = 0; | |
370 #define FIXEDH 530 /* number of hufts used by fixed tables */ | |
371 local uInt fixed_left = FIXEDH; | |
372 local inflate_huft fixed_mem[FIXEDH]; | |
373 local uInt fixed_bl; | |
374 local uInt fixed_bd; | |
375 local inflate_huft *fixed_tl; | |
376 local inflate_huft *fixed_td; | |
377 | |
378 | |
379 local voidp falloc(q, n, s) | |
380 voidp q; /* opaque pointer (not used) */ | |
381 uInt n; /* number of items */ | |
382 uInt s; /* size of item */ | |
383 { | |
384 Assert(s == sizeof(inflate_huft) && n <= fixed_left, | |
385 "inflate_trees falloc overflow"); | |
386 if (q) s++; /* to make some compilers happy */ | |
387 fixed_left -= n; | |
388 return (voidp)(fixed_mem + fixed_left); | |
389 } | |
390 | |
391 | |
392 local void ffree(q, p) | |
393 voidp q; | |
394 voidp p; | |
395 { | |
396 Assert(0, "inflate_trees ffree called!"); | |
397 if (q) q = p; /* to make some compilers happy */ | |
398 } | |
399 | |
400 | |
401 int inflate_trees_fixed(bl, bd, tl, td) | |
402 uInt *bl; /* literal desired/actual bit depth */ | |
403 uInt *bd; /* distance desired/actual bit depth */ | |
404 inflate_huft **tl; /* literal/length tree result */ | |
405 inflate_huft **td; /* distance tree result */ | |
406 { | |
407 /* build fixed tables if not built already--lock out other instances */ | |
408 while (++fixed_lock > 1) | |
409 fixed_lock--; | |
410 if (!fixed_built) | |
411 { | |
412 int k; /* temporary variable */ | |
413 unsigned c[288]; /* length list for huft_build */ | |
414 z_stream z; /* for falloc function */ | |
415 | |
416 /* set up fake z_stream for memory routines */ | |
417 z.zalloc = falloc; | |
418 z.zfree = ffree; | |
419 z.opaque = Z_NULL; | |
420 | |
421 /* literal table */ | |
422 for (k = 0; k < 144; k++) | |
423 c[k] = 8; | |
424 for (; k < 256; k++) | |
425 c[k] = 9; | |
426 for (; k < 280; k++) | |
427 c[k] = 7; | |
428 for (; k < 288; k++) | |
429 c[k] = 8; | |
430 fixed_bl = 7; | |
431 huft_build(c, 288, 257, cplens, cplext, &fixed_tl, &fixed_bl, &z); | |
432 | |
433 /* distance table */ | |
434 for (k = 0; k < 30; k++) | |
435 c[k] = 5; | |
436 fixed_bd = 5; | |
437 huft_build(c, 30, 0, cpdist, cpdext, &fixed_td, &fixed_bd, &z); | |
438 | |
439 /* done */ | |
440 fixed_built = 1; | |
441 } | |
442 fixed_lock--; | |
443 *bl = fixed_bl; | |
444 *bd = fixed_bd; | |
445 *tl = fixed_tl; | |
446 *td = fixed_td; | |
447 return Z_OK; | |
448 } | |
449 | |
450 | |
451 int inflate_trees_free(t, z) | |
452 inflate_huft *t; /* table to free */ | |
453 z_stream *z; /* for zfree function */ | |
454 /* Free the malloc'ed tables built by huft_build(), which makes a linked | |
455 list of the tables it made, with the links in a dummy first entry of | |
456 each table. */ | |
457 { | |
458 register inflate_huft *p, *q; | |
459 | |
460 /* Don't free fixed trees */ | |
461 if (t >= fixed_mem && t <= fixed_mem + FIXEDH) | |
462 return Z_OK; | |
463 | |
464 /* Go through linked list, freeing from the malloced (t[-1]) address. */ | |
465 p = t; | |
466 while (p != Z_NULL) | |
467 { | |
468 q = (--p)->next; | |
469 ZFREE(z,p); | |
470 p = q; | |
471 } | |
472 return Z_OK; | |
473 } |