view musiccutter.py @ 42:3925ac56d99e

Allow flushing notes. Requires refactoring a bunch of crap though and makes some of the functions know a bit bunch..
author Daniel O'Connor <darius@dons.net.au>
date Tue, 24 May 2016 19:42:02 +0930
parents 21da8af1cdd2
children c69e53b8917c
line wrap: on
line source

#!/usr/bin/env python

from IPython.core.debugger import Tracer
import ConfigParser
import exceptions
import itertools
import math
import mido
import os.path
import reportlab.lib.colors
import reportlab.pdfgen.canvas
from reportlab.lib.units import mm
import sys

CUT_COLOUR = reportlab.lib.colors.red
ENGRAVE_COLOUR = reportlab.lib.colors.black

class Stats(object):
    pass

class EVWrap(object):
    def __init__(self, ev):
        self.ev = ev

def test(filename = None, shift = 0):
    if filename == None:
        filename = 'test.midi'
    # Card layout from http://www.orgues-de-barbarie.com/wp-content/uploads/2014/09/format-cartons.pdf
    # Notes are read from right to left
    # Highest note is at the bottom (closest to the crank)
    #  fold   fold
    #    in   out
    #     V   ^
    # +---+---+---+ lowest note
    # |   |   |   |
    # +---+---+---+ highest note
    #
    m = Midi2PDF(**{
        'config' : 'orgues-de-barbarie-27.ini',
        'leadin' : 50,
        'timemarks' : False,
        'trytranspose' : True,
        'drawrect' : False,
        'notenames' : False,
        'notelines' : False,
        'noteoffset' : shift,
        'pagesperpdf' : 1,
        'timescale' : 30,
        'notescale' : 0.9,
        'fontname' : 'Helvetica',
        'fontsize' : 12,
        })
    base, ext = os.path.splitext(filename)
    base = os.path.basename(base)
    m.processMidi(filename, base + '-%02d.pdf')

class Midi2PDF(object):
    def __init__(self, config, leadin, timemarks, trytranspose, drawrect, notenames, notelines, noteoffset, pagesperpdf, timescale, notescale, fontname, fontsize):
        cp = ConfigParser.ConfigParser()
        cp.read(config)
        self.pagewidth = cp.getfloat('default', 'pagewidth')
        self.pageheight = cp.getfloat('default', 'pageheight')
        self.pitch = cp.getfloat('default', 'pitch')
        self.slotsize = cp.getfloat('default', 'slotsize')
        self.heel = cp.getfloat('default', 'heel')
        self.leadin = leadin # Extra at the start
        self.timemarks = timemarks # Draw vertical time lines
        self.trytranspose = trytranspose # Attempt to tranpose unplayable notes
        self.drawrect = drawrect # Draw rectangle around each page
        self.notenames = notenames # Draw note names on the right edge
        self.notelines = notelines # Draw line rulers
        self.noteoffset = noteoffset # Amount to adjust note pitches by (+12 = 1 octave)
        self.pagesperpdf = pagesperpdf # Number of pages to emit per PDF
        self.timescale = timescale # Width per second
        self.notescale = notescale # Multiply all note lengths by this (to get rearticulation)
        self.fontname = fontname
        self.fontsize = fontsize # Points

        self.pdfwidth = self.pagewidth * self.pagesperpdf

        self.midi2note, self.note2midi = Midi2PDF.genmidi2note()
        self.note2slot, self.slot2note = Midi2PDF.loadnote2slot(cp.get('default', 'notes').split(), self.note2midi)

    def processMidi(self, midifile, outpat):
        self.stats = Stats()
        self.stats.playablecount = 0
        self.stats.unplayablecount = 0
        self.stats.transposeupcount = 0
        self.stats.transposedowncount = 0
        midi = mido.MidiFile(midifile)
        self.ctime = 0
        self.channels = []
        for i in range(16): # 16 is the maximum number of MIDI channels
            self.channels.append({})

        npages = int(math.ceil(((midi.length * self.timescale) + self.leadin) / self.pagewidth))
        npdfs = int(math.ceil(float(npages) / self.pagesperpdf))
        print 'npages %d, npdfs %d' % (npages, npdfs)

        self.pdfs = []
        for i in range(npdfs):
            pdf = reportlab.pdfgen.canvas.Canvas(file(outpat % (i + 1), 'w'),
                                                 pagesize = (self.pdfwidth * mm, self.pageheight * mm))
            self.pdfs.append(pdf)

        title = os.path.basename(midifile)
        title, ext = os.path.splitext(title)
        for ev in midi:
            # Adjust pitch
            if hasattr(ev, 'note'):
                ev.note += self.noteoffset
            self.ctime += ev.time
            print '%.03f: %s' % (self.ctime, str(ev))
            #Tracer()()

            if ev.type == 'text' and self.ctime == 0:
                title = ev.text
            if ev.type == 'note_on' and ev.velocity > 0:
                if ev.note in self.channels[ev.channel]:
                    print 'Duplicate note_on message at %.1f sec channel %d note %d' % (self.ctime, ev.channel, ev.note)
                else:
                    # Store start time
                    self.channels[ev.channel][ev.note] = self.ctime
            # note_on with velocity of 0 is a note_off
            elif ev.type == 'note_off' or (ev.type == 'note_on' and ev.velocity == 0):
                if ev.note not in self.channels[ev.channel]:
                    # These can be rests (iWriteMusic)
                    print 'note_off with no corresponding note_on at %.1f sec for channel %d note %d' % (self.ctime, ev.channel, ev.note)
                    continue
                else:
                    orignote = self.emitnote(ev)
                del self.channels[ev.channel][orignote]
            elif ev.type == 'end_of_track':
                for chan in self.channels:
                    for ev in chan:
                        print 'Flushed', ev
                        self.emitnote(ev)
                        print ev

        print 'Playable count:', self.stats.playablecount
        print 'Unplayable count:', self.stats.unplayablecount
        if self.trytranspose:
            print 'Transpose down:', self.stats.transposedowncount
            print 'Transpose up:', self.stats.transposeupcount

        # Do per-page things
        for pindx in range(npages):
            pdf = self.pdfs[pindx / self.pagesperpdf] # PDF for this page
            # Offset into PDF where the page starts
            pageofs = self.pagewidth * (self.pagesperpdf - (pindx % self.pagesperpdf) - 1)
            # Add title and page number
            Midi2PDF.textHelper(pdf, pageofs * mm, 1 * mm,
                                ENGRAVE_COLOUR, True, self.fontname, self.fontsize,
                                '%s (%d / %d)' % (title, pindx + 1, npages))
            pdf.saveState()
            pdf.setLineWidth(0)

            # Draw time marks every 5 seconds
            if self.timemarks:
                pdfidx = pindx / self.pagesperpdf
                # Work out start and end times (pdf 1 is special due to leadin)
                tstart = self.leadin / self.timescale
                tend = (self.pagewidth * self.pagesperpdf) / self.timescale
                if pindx > 0:
                    tsize = self.pagewidth  / self.timescale # Amount of time per pdf
                    tstart = tend + tsize * pdfidx
                    tend = tend + tsize * (pdfidx + 1)
                for s in range(tstart, tend, 5):
                    x = self.pagewidth - (float(s * self.timescale + self.leadin) % self.pagewidth)
                    pdf.line(x * mm, self.heel, x * mm, self.pageheight * mm)
                    Midi2PDF.textHelper(pdf, x * mm, 1 * mm, ENGRAVE_COLOUR, False, self.fontname, self.fontsize, str(s) + 's')

            # Draw rectangle around page (upper and right hand ends don't seem to render though)
            if self.drawrect:
                pdf.rect((pindx % self.pagesperpdf) * self.pagewidth * mm, 0,
                         self.pagewidth * mm, self.pageheight * mm, fill = False, stroke = True)

            # Draw lines per note
            for slot in sorted(self.slot2note.keys()):
                ofs = self.pageheight - (self.heel + slot * self.pitch) - self.slotsize / 2
                if self.notelines:
                    pdf.line(0, ofs * mm, self.pdfwidth * mm, ofs * mm)
                # Note name
                if self.notenames:
                    Midi2PDF.textHelper(pdf, (self.pdfwidth - 10) * mm, (ofs + 0.5) * mm, ENGRAVE_COLOUR, False, self.fontname, self.fontsize, self.slot2note[slot])
            pdf.restoreState()
        for pdf in self.pdfs:
            pdf.save()

    def noteisplayable(self, midi):
        #Tracer()()
        if midi in self.midi2note:
            notename = self.midi2note[midi]
            if notename in self.note2slot:
                return True

        return False

    # Check if the organ can play the note
    def transposenote(self, evw, amount):
        evw.ev.note += amount
        evw.notename = self.midi2note[evw.ev.note]
        evw.slot = self.note2slot[evw.notename]

    # Work out which slot to use for the note, transpose if desired
    def getslotfornote(self, evw):
        evw.slot = None
        evw.notename = None

        # First off, is the note in our midi table?
        if evw.ev.note in self.midi2note:
            evw.notename = self.midi2note[evw.ev.note]
            # Is it playable?
            if self.noteisplayable(evw.ev.note):
                evw.slot = self.note2slot[evw.notename]
            # Nope, maybe we can transpose?
            elif self.trytranspose:
                # Go for -3 to +3 octaves (going down first)
                for i in [-12, -24, -36, 12, 24, 36]:
                    if self.noteisplayable(evw.ev.note + i):
                        self.transposenote(evw, i)
                        if i < 0:
                            self.stats.transposedowncount += 1
                            tmp = 'down'
                        else:
                            self.stats.transposeupcount += 1
                            tmp = 'up'
                        print 'Transposed note at %.1f sec %s (%d) %s %d octave(s) to %s (%d)' % (
                            self.ctime, self.midi2note[evw.ev.note - i], evw.ev.note - i, tmp,
                            abs(i / 12), evw.notename, evw.ev.note)
                        break
            if evw.slot != None:
                self.stats.playablecount += 1
            else:
                print 'Note at %.1f sec %d (%s) not playable' % (self.ctime, evw.ev.note, self.midi2note[evw.ev.note])
                self.stats.unplayablecount += 1
        else:
            print 'Note at %.1f sec, %d not in MIDI table' % (self.ctime, evw.ev.note)
            self.stats.unplayablecount += 1

    # http://newt.phys.unsw.edu.au/jw/notes.html
    # But this seems dumb since the lowest MIDI note is 0 which would be C-1..
    @staticmethod
    def genmidi2note():
        '''Create forward & reverse tables for midi number to note name (assuming 69 = A4 = A440)'''
        names = ['C%d', 'C%d#', 'D%d', 'D%d#', 'E%d', 'F%d', 'F%d#', 'G%d', 'G%d#', 'A%d', 'A%d#', 'B%d']
        midi2note = {}
        note2midi = {}
        for midi in range(12, 128):
            octave = midi / len(names) - 1
            index = midi % len(names)
            name = names[index] % (octave)
            midi2note[midi] = name
            note2midi[name] = midi

        return midi2note, note2midi

    @staticmethod
    def loadnote2slot(notelist, note2midi):
        note2slot = {}
        slot2note = {}
        index = 0

        for note in notelist:
            note = note.strip()
            if note[0] == '#':
                continue
            if note not in note2midi:
                raise exceptions.ValueError('Note \'%s\' not valid' % note)
            note2slot[note] = index
            slot2note[index] = note
            index += 1

        return note2slot, slot2note

    def emitnote(self, ev):
        orignote = ev.note
        start = self.channels[ev.channel][orignote]
        evw = EVWrap(ev)
        # Find a slot (plus adjust pitch, attempt transposition etc)
        if hasattr(ev, 'note'):
            self.getslotfornote(evw)
        # Check if it was unplayable
        if evw.slot == None:
            return orignote
        notelen = self.ctime - start
        print 'Note %s (%d) at %.2f length %.2f' % (evw.notename, evw.slot, start, notelen)
        x = start * self.timescale + self.leadin # Convert start time to distance
        pdfidx = int(x / self.pdfwidth) # Determine which pdf
        x = x % self.pdfwidth # and where on that pdf
        h = self.slotsize
        y = self.pageheight - (self.heel + evw.slot * self.pitch - self.slotsize / 2) - self.slotsize
        w = notelen * self.timescale # Convert note length in time to distance

        #print 'pdf = %d x = %.3f y = %.3f w = %.3f h = %.3f' % (pdfidx, x, y, w, h)
        w1 = w
        # Check if the note crosses a pdf
        if x + w > self.pdfwidth:
            w1 = self.pdfwidth - x # Crop first note
            w2 = w - w1 # Calculate length of second note
            assert w2 <= self.pdfwidth, 'note extends for more than a pdf'
            # Emit second half of note
            #print 'split note, pdf %d w2 = %.3f' % (pdfidx + 1, w2)
            Midi2PDF._emitnote(self.pdfs[pdfidx + 1], self.pdfwidth - w2, y, w2, h)

        Midi2PDF._emitnote(self.pdfs[pdfidx], self.pdfwidth - x - w1, y, w1, h)
        return orignote

    @staticmethod
    def _emitnote(pdf, x, y, w, h):
        pdf.saveState()
        pdf.setStrokeColor(CUT_COLOUR)
        pdf.setLineWidth(0)
        pdf.rect(x * mm, y * mm, w * mm, h * mm, fill = False, stroke = True)
        pdf.restoreState()

    @staticmethod
    def textHelper(pdf, x, y, colour, fill, fontname, fontsize, text):
        tobj = pdf.beginText()
        tobj.setTextOrigin(x, y)
        tobj.setFont(fontname, fontsize)
        tobj.setStrokeColor(colour)
        tobj.setFillColor(colour)
        if fill:
            tobj.setTextRenderMode(0)
        else:
            tobj.setTextRenderMode(1)
        tobj.textLine(text)
        pdf.drawText(tobj)

if __name__ == '__main__':
    main()